
HTTPocalypse

master-httpocalypse-juc #78857

2

Ask your questions
any time!

3

Root issues

● Multiple rich scopes
– base (controllers)
– web (RPCs)
– portal/website (web pages)

● Knowledge spread across multiple teams
– MetastORM
– JS Framework
– Website

4

Symptoms

● Conflicting APIs
– type=”http” vs type=”json”
– Base ir.http vs Website ir.http

● Technical dept
– Unclear ORM initialization
– Many ir.http _dispatch() overrides
– Glorified request attributes

● Bad error reporting
– https://www.odoo.com/r/llkS

https://www.odoo.com/r/llkS

5

Consequences

● Websocket anyone?
● Lang in URL madness
● RPC over RPC over HTTP
● Payment webhooks anyone?

HTTP Apocalypse

Implementation

7

__call__ serve dispatch endpoint→ → →

● Application.__call__(environ, start_response)
– WSGI entrypoint
– Create and expose Request()
– Determine if static or nodb or db
– Error reporting

8

__call__ → serve dispatch endpoint→ →

● Request._serve_static()
– Match a route /<module>/static/<path>
– Stream the file from the file system

9

__call__ → serve dispatch endpoint→ →

● Request._serve_nodb()
– When database cookie is missing

● Actually not a cookie by itself, the info is
concatenated to the session-id

– Match @route(auth=None)
– Doesn’t connect to a DB/doesn’t init the ORM
– Doesn’t use ir.http
– Continue with a type-specialized dispatcher

10

__call__ → serve dispatch endpoint→ →

● Request._serve_db() & _serve_ir_http()
– When database cookie is set
– Open a cursor to the database, setup the registry
– Load the session from the database

● Model ir.session {sid, data}
● Data as JSON: {context, debug, login, uid,

session_token}

– Setup the environment using session uid and ctx
– Call retrying(_serve_ir_http)

11

__call__ → serve dispatch endpoint→ →

● Request._serve_db() & _serve_ir_http()
– Delegate to ir.http:

● _match()
● _authenticate()
● _pre_dispatch()

– Continue with a type-specialized dispatcher

12

__call__ → serve → dispatch endpoint→

● HttpDispatcher.dispatch()
– Load Request.params from:

● the URL
● the query-string
● the html form
● the html files

– Verify CSRF

13

__call__ → serve → dispatch endpoint→

● JsonDispatcher.dispatch()
– Lobotomized JSON-RPC2 implementation

● Ignore the “jsonrpc” and “method” keys
● Only support params by name
● Response/errors are well supported

– Load Request.params from
● The JSON “params” object in the body

– Should be named type=”jsonrpc”
– Impossible to send non-jsonrpc json data :(

14

__call__ → serve → dispatch → endpoint

● The @route decorated method

15

ir.http base

● Changed _dispatch() method
– Still wrap the call to the endpoint
– No longer the entrypoint of ir.http

● Responsibility moved to http.py:
Request._serve_ir_http

● _postprocess_args → _pre_dispatch

16

ir.http web

● A lot of small changes related to the various
logins (/web/login, totp, oauth)

● session.authenticate() does no longer
change request.env.cr, the request’s cr stays
open in the original database

17

ir.http http_routing/portal/website

18

ir.http http_routing/portal/website

● Complete refactor
– No more _dispatch() override black magic
– Lang in URL moved to _match()

● _match() vs _serve_fallback()
– Website pages are not registered in the router
– _authenticate() / _pre_dispatch() ?

● _frontend_pre_dispatch()
– For both _serve_fallback, @route(website=True)

and _handle_error

19

ir.http http_routing/portal/website

● Read the commit message!
– It explains the functional challenges of the

three modules
– It explains the previous implementation
– It shows how that previous implem. clashes

with the HTTPocalypse
– It details the proposed changes

● We are quite proud of the result

HTTP Apocalypse

API

21

ir.http match

● _match(path) (rule, args)→
– Use the werkzeug router to match an endpoint

given a path.

● When to override ?
– You need to modify the request path before

you match a backend route and you cannot
redirect (3xx response) the user on that URL.

22

ir.http authenticate

● _authenticate(endpoint)
– Verify the user is logged in (auth==’user’)
– Grand the public user in case the user is not

logged in (auth=’public’)

● When to override ?
– You don’t override it, you provide a new
_auth_method_x() authentication method to
use with @route(auth=’x’)

23

ir.http Pre Dispatch

● _pre_dispatch(rule, args)
– Called when a backend endpoint matched
– Used to prepare the system to handle the

request

● When to override ?
– You need to save some options from the query-

string in the session, in the context or in the
response cookies before serving a backend
endpoint.

24

ir.http Frontend Pre Dispatch

● _frontend_pre_dispatch()
– Called when you serve a website page or a

@route(website=True) backend endpoint
– Used to prepare the system to handle the

request

● When to override ?
– You need to save some options from the query-

string in the session, in the context or in the
response cookies before serving a website
page.

25

ir.http Serve Fallback

● _serve_fallback()
– Called when no endpoint matched
– Used to serve content unreachable by the router

● When to override ?
– This is discouraged, the user is not

authenticated yet
– You need to deliver a new kind of content,

content that cannot be served nor via the static
files, nor via a backend endpoint nor via website
but you need Odoo.

26

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

