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Ask your questions 
any time!
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Root issues

● Multiple rich scopes
– base (controllers)
– web (RPCs)
– portal/website (web pages)

● Knowledge spread across multiple teams
– MetastORM
– JS Framework
– Website
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Symptoms

● Conflicting APIs
– type=”http” vs type=”json”
– Base ir.http vs Website ir.http

● Technical dept
– Unclear ORM initialization
– Many ir.http _dispatch() overrides
– Glorified request attributes

● Bad error reporting
– https://www.odoo.com/r/llkS

https://www.odoo.com/r/llkS
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Consequences

● Websocket anyone?
● Lang in URL madness
● RPC over RPC over HTTP
● Payment webhooks anyone?



HTTP Apocalypse

Implementation
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__call__  serve  dispatch  endpoint→ → →

● Application.__call__(environ, start_response)
– WSGI entrypoint
– Create and expose Request()
– Determine if static or nodb or db
– Error reporting
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__call__  → serve  dispatch  endpoint→ →

● Request._serve_static()
– Match a route /<module>/static/<path>
– Stream the file from the file system
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__call__  → serve  dispatch  endpoint→ →

● Request._serve_nodb()
– When database cookie is missing

● Actually not a cookie by itself, the info is 
concatenated to the session-id

– Match @route(auth=None)
– Doesn’t connect to a DB/doesn’t init the ORM
– Doesn’t use ir.http
– Continue with a type-specialized dispatcher
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__call__  → serve  dispatch  endpoint→ →

● Request._serve_db() & _serve_ir_http()
– When database cookie is set
– Open a cursor to the database, setup the registry
– Load the session from the database

● Model ir.session {sid, data}
● Data as JSON: {context, debug, login, uid, 

session_token}

– Setup the environment using session uid and ctx
– Call retrying(_serve_ir_http)
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__call__  → serve  dispatch  endpoint→ →

● Request._serve_db() & _serve_ir_http()
– Delegate to ir.http:

● _match()
● _authenticate()
● _pre_dispatch()

– Continue with a type-specialized dispatcher
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__call__  → serve  → dispatch  endpoint→

● HttpDispatcher.dispatch()
– Load Request.params from:

● the URL
● the query-string
● the html form
● the html files

– Verify CSRF
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__call__  → serve  → dispatch  endpoint→

● JsonDispatcher.dispatch()
– Lobotomized JSON-RPC2 implementation

● Ignore the “jsonrpc” and “method” keys
● Only support params by name
● Response/errors are well supported

– Load Request.params from
● The JSON “params” object in the body

– Should be named type=”jsonrpc”
– Impossible to send non-jsonrpc json data :(
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__call__  → serve  → dispatch  → endpoint

● The @route decorated method
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ir.http base

● Changed _dispatch() method
– Still wrap the call to the endpoint
– No longer the entrypoint of ir.http

● Responsibility moved to http.py: 
Request._serve_ir_http

● _postprocess_args  → _pre_dispatch



16

ir.http web

● A lot of small changes related to the various 
logins (/web/login, totp, oauth)

● session.authenticate() does no longer 
change request.env.cr, the request’s cr stays 
open in the original database
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ir.http http_routing/portal/website
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ir.http http_routing/portal/website

● Complete refactor
– No more _dispatch() override black magic
– Lang in URL moved to _match()

● _match() vs _serve_fallback()
– Website pages are not registered in the router
– _authenticate() / _pre_dispatch() ?

● _frontend_pre_dispatch()
– For both _serve_fallback, @route(website=True) 

and _handle_error
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ir.http http_routing/portal/website

● Read the commit message!
– It explains the functional challenges of the 

three modules
– It explains the previous implementation
– It shows how that previous implem. clashes 

with the HTTPocalypse
– It details the proposed changes

● We are quite proud of the result



HTTP Apocalypse

API
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ir.http match

● _match(path)  (rule, args)→
– Use the werkzeug router to match an endpoint 

given a path.

● When to override ?
– You need to modify the request path before 

you match a backend route and you cannot 
redirect (3xx response) the user on that URL.
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ir.http authenticate

● _authenticate(endpoint)
– Verify the user is logged in (auth==’user’)
– Grand the public user in case the user is not 

logged in (auth=’public’)

● When to override ?
– You don’t override it, you provide a new 
_auth_method_x() authentication method to 
use with  @route(auth=’x’)
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ir.http Pre Dispatch

● _pre_dispatch(rule, args)
– Called when a backend endpoint matched
– Used to prepare the system to handle the 

request

● When to override ?
– You need to save some options from the query-

string in the session, in the context or in the 
response cookies before serving a backend 
endpoint.
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ir.http Frontend Pre Dispatch

● _frontend_pre_dispatch()
– Called when you serve a website page or a 

@route(website=True) backend endpoint
– Used to prepare the system to handle the 

request

● When to override ?
– You need to save some options from the query-

string in the session, in the context or in the 
response cookies before serving a website 
page.
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ir.http Serve Fallback

● _serve_fallback()
– Called when no endpoint matched
– Used to serve content unreachable by the router

● When to override ?
– This is discouraged, the user is not 

authenticated yet
– You need to deliver a new kind of content, 

content that cannot be served nor via the static 
files, nor via a backend endpoint nor via website 
but you need Odoo.
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Thank you!
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