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Abstract

Since the beginning of AI, mind games have been studied as relevant application fields. Nowadays,
some programs are better than human players in most classical games. Their results highlight the
efficiency of AI methods that are now quite standard. Such methods are very useful to Go programs,
but they do not enable a strong Go program to be built. The problems related to Computer Go require
new AI problem solving methods. Given the great number of problems and the diversity of possible
solutions, Computer Go is an attractive research domain for AI. Prospective methods of programming
the game of Go will probably be of interest in other domains as well. The goal of this paper is to
present Computer Go by showing the links between existing studies on Computer Go and different
AI related domains: evaluation function, heuristic search, machine learning, automatic knowledge
generation, mathematical morphology and cognitive science. In addition, this paper describes both
the practical aspects of Go programming, such as program optimization, and various theoretical
aspects such as combinatorial game theory, mathematical morphology, and Monte Carlo methods.
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1. Introduction

Since the beginning of AI, mind games, such as Checkers [114,115] or Chess [121],
have been studied as application fields for AI. Nowadays, some programs are better than
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human players in most classical games: Deep Blue in Chess [4,67], Chinook in Checkers
[117,118], Logistello in Othello [25], Victoria in Go-moku [3]. These results highlight the
efficiency of AI methods that are now quite standard.

These methods are very useful to Go programs. However, by themselves, they do
not enable the AI community to build a strong Go program. The problems related to
Computer Go require new AI problem solving methods. Given the abundance of problems,
and the diversity of possible solutions, Computer Go is an attractive research domain
for AI. Prospective methods of programming the game of Go will probably be of interest
in other domains—for example tree search in classical games is related to AND-OR
tree solving, theorem proving, and constraint satisfaction. The current cornerstone in
game programming is the Alpha-Beta algorithm. It was discovered in the early stages of
AI research, and has been regularly improved ever since. Computer Go programmers are
still looking for their cornerstone, which will certainly be more complex than for other
games. The Computer Go community has reached an agreement on some unavoidable
low level modules such as tactical modules, but specialists still disagree on some other
important points. Future programs will probably use the best of all the current possibilities,
and link them together in a harmonious way.

The goal of this paper is to present Computer Go by showing the links between existing
studies on Computer Go and different AI related domains: evaluation function, heuristic
search, machine learning, automatic knowledge generation, mathematical morphology and
cognitive science.

To show where the difficulty of Go programming lies, it is first necessary to compare
the game of Go to other classical games in a conventional way. In Section 2, we show
that the combinatorial complexity is much higher in Go than in other two-player, complete
information, games. We also point out that the evaluation of a position can be very complex.
Therefore, unlike other games, Section 3 shows that Go programs have poor rankings in
the human ranking system and deals with the results obtained when computers compete
against human players and when computers play against other computers.

As usual with computer games, we introduce the architecture of a Go program. We
examine: the evaluation function, in Section 4; move generation, in Section 5; and tree
search, in Section 6. After expounding the key concepts of the evaluation function, based
on numerous concepts and viewpoints, we focus on the relationships between tree search
and the evaluation function. Tree search is used, both to find a good move in using the
evaluation function, and to perform tactical computations useful to calculate the evaluation
function.

However, the architecture of a Go program is not composed of these two parts alone.
The notion of abstraction plays an important role in Go, and Go programs exhibit structure
at different levels, the highest level being the strategic level, and the lowest level being the
tactical level. In order to be competitive, every level of a Go program has to be optimized.
Therefore Go programmers spend much of their time on optimizations. In Section 7, we
present some examples of possible optimizations at different levels of abstraction.

In Section 8, closely related with mathematics, we examine combinatorial game
theory [43], which deals with games as the sum of independent sub-games. The game of
Go is a global game that can be broken down into many local sub-games. Although local
sub-games are generally dependent, this theory offers an appropriate model for the game
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of Go. More precisely, the strategic level of a program may represent each tactical game
by a combinatorial game. This theory is better applied to the end of the game, when local
sub-games become independent, and it enables the calculation of the value of the very last
moves of the endgame with greater accuracy. In some positions devised to illustrate this
theory, some programs play better than the best professional players. The major current
difficulty in applying this theory to other sub-games of Go arises from the high dependence
between local sub-games.

A problem inherent in Computer Go is that the models with the best results use a lot of
knowledge. This need for knowledge makes machine learning, and automatic generation
of knowledge, attractive. The best method to obtain an average Go program very rapidly
is undoubtedly the temporal difference method. Some symbolic approaches have also
been tried, in an attempt automatically to generate tactical knowledge. The two symbolic
methods which yield good results are retrograde analysis of small patterns, and logic
metaprogramming. By using them, a large number of tactical rules can be generated for
the tactical levels of a Go program. We present the different methods that automatically
generate Go knowledge in Section 9.

In Section 10, we present a surprisingly effective technique that works quite well for Go:
Monte Carlo Go. This technique uses hardly any Go knowledge. However, a very simple
program, using this technique, beats classical, and much more complex, programs on small
boards (9 × 9).

The game of Go is a very visual game. Since the beginning of Computer Go, many
models of influence have been set up. We provide a formalization of these models with
some classical operators of mathematical morphology, in Section 11.

Go is so complex that it can be used to perform interesting cognitive experiments, within
a formal setting imposed by the rules of the game. Section 12 centers on the studies carried
out on Go, using a cognitive approach.

The material used in this survey is based on existing Computer Go publications and
on the authors’ own experience of writing Go programs. Unfortunately, programs whose
authors do not describe their algorithms and, furthermore, keep them secret, do not
explicitly appear in this survey. Nevertheless, for the strongest commercial programs
in this category, we tried to gather some personal communications that were sent to
the Computer Go mailing list. We could then mention these programs, and give short
descriptions of them. We also base descriptions of the main components of this survey
on our own experience of writing Go programs: Indigo [15,17,18,20,21], Gogol [28–30]
and Golois [32–34]. We think that Computer Go remains a new domain for computer
science, and so far, no clear theoretical model has emerged. The domain greatly benefits
from studies based on practical experiments. For instance, the Evaluation Function section
mainly refers to the Indigo program, and the Automatic Knowledge Generation section to
Golois. Nevertheless, we do not limit our descriptions to these programs, and enlarge upon
them using the relevant Computer Go publications.

We choose not to include the rules of the game of Go in this paper. If the reader wishes
to know them, he can refer to http://www.usgo.org/resources/whatisgo.html where he will
find the definitions of “intersection”, “stone”, “string”, “liberty”, “atari”, “ko”, “group”,
“eye”, “tsumego”, “life”, “death”, “territory”, “influence”, “handicap”, “kyu” and “dan”
which are Go concepts used by our paper.
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2. Other games

2.1. Introduction

This section centers on the current achievements in computer implementations of other
two-player, complete information, and zero-sum, games, which we also call “other games”.
Our aim is to show that the game of Go is more complex than these “other games”. First, we
focus on the detailed results for each game. Secondly, we review the theoretical complexity
of some of these games. Then we study the space states, and game tree complexity [1] of
these games, correlate these with the level reached on the human scale. Lastly, we outline
the complexity of Go.

2.2. Results achieved in other games

In this paragraph, we choose several games within the class of “other games”: Go-moku,
Othello, Checkers, Draughts, Chess, and Shogi. Although it does not belong to this class,
we also add Backgammon to our study.

Go-moku
Go-moku is the game in which you must put five beads in a row—either horizontally,

vertically, or diagonally. Several variants exist depending on the size of the board, and the
optional use of capture rules. The simplest variant (no capture) is worth considering for
implementation as a Computer Game because it is an example of a solved game, since [3]
exhibited the winning strategy. Victoria is the best Go-moku program.

Backgammon
Backgammon is not a complete information game (because the players throw two dice)

but the techniques used to program Backgammon are interesting, therefore we include it
in our set of other games. The best Backgammon program, TD-Gammon, is a Neural Net
program, which learned the game only by playing against itself. This program is on a par
with the best human players. It was developed at IBM by Tesauro [127,128,130]. It is
clearly stronger than other Backgammon programs and it uses the Temporal Difference
algorithm [125]. As early as 1980, thanks to some lucky throws of dice, a program [11]
beat the human world champion Luigi Villa.

Othello
Logistello [25] is by far the best Othello program. It is based on a well-tuned evaluation

function, which was built by using example-learning techniques; on an opening book; and
on a selective search. It won numerous computer tournaments. In August 1997, it beat the
world champion Mr. Murakami with a straight win 6–0. But in January 1998, Michael
Buro, its author, decided to work on different challenges.

Checkers
Computer Checkers met with very early success because. As early as 1959, Samuel

developed a Checkers program which won against a “strong” Checkers player [114]. This
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program was a learning program. However, it is hard to assess its result because the strength
of the “strong” player is debatable. This program is also described in [115].

Since 1988, Jonathan Schaeffer, and several researchers at the Alberta University, have
been developing the Chinook program [117]. This program is the Computer Checkers
World champion which played a match against the human world champion, Marion
Tinsley, in 1992 (4 defeats, 2 wins and 33 draws). Marion Tinsley had been the world
champion since 1954 and was very fond of Checkers programs. After 6 draws, the 1994
series was interrupted because Marion Tinsley was very seriously ill. Then, Chinook
competed against Don Lafferty in 1994 (1 victory, 1 defeat and 18 draws), and in 1995
(1 victory and 31 draws). Ever since, Chinook has been considered as the world champion,
both in the human, and in the machine categories. Chinook uses an endgame database,
with all the positions containing fewer than 8 pieces. Chinook uses parallelism, an opening
book, and an extended Checkers knowledge base. A complete history of this development
can be found in [118].

Draughts
The best Draughts program is Dutch. Its name is Truus, and it can be ranked at a national

level. New programs (Flits 95 and Dios 97) are now threatening Truus. Flits 95 won the
latest two Dutch Computer Draughts championships, although Truus did not participate in
the most recent tournament.

Chess
Shannon [121] showed that computer Chess was a good problem for AI to solve because

of the cleverness of its rules and the simplicity of the winning goal. For Shannon, this
problem was neither too simple nor too difficult. Since then, intensive research has been
done, and the paradigm is clearly tree search, and Alpha-Beta [4]. In 1988, Gary Kasparov,
the world champion, claimed that a computer had no chance of beating him before the
year 2000. At that time, Deep Thought—IBM hardware and software—had in fact only an
international Grandmaster rating. Deep Thought was using tree search with Alpha-Beta.
It was exploring about 500,000 positions per second [67]. In May 1997, Deep Blue—the
massively parallel descendant of Deep Thought—beat Kasparov with a score of 3.5–2.5. It
was also using Alpha-Beta, but exploring around one billion positions per second. Given
the popularity of Chess, and the increasing use of computers in everyday life, this success
made a strong impression on everybody. Moreover, experiments in Chess have established
a correlation between tree search depth, and the level of the resulting program.

Shogi
After the success obtained in Chess, the game of Shogi, or Japanese Chess, was, and still

is, the next target for Computer Games [84]. Its complexity is greater than the complexity
of Chess because of the possible re-introduction, on the board, of previously captured
pieces. The branching factor is about 100 in Shogi, as against 35 in Chess. The position is
very difficult to evaluate. The best program [143] uses a variant of iterative deepening tree
search, and can be ranked at an average level on the human scale.
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2.3. Theoretical complexity

When discussing the complexity of games, it is necessary to mention published results
about the theoretical complexity of games. Checkers [109] and Go [110] are exponential
time complete, as a function of the size of the board. Fraenkel and Lichtenstein [54]
have shown that playing a perfect strategy in n by n Chess requires exponential time.
Lichtenstein and Sipser [82] have shown that Go is polynomial-space hard. These
theoretical results show that Go seems to be even more complex than Checkers and Chess,
because these two games have not been proved polynomial-space hard.

2.4. Space states and game tree complexity of other games

By taking the complexity of games into account, a very good classification of two-player,
complete information, zero-sum, games has been established by Allis [1] and van den Herik
et al. [63]. This section briefly sums up this classification. Allis [1] defined the space states
complexity (E) as the number of positions you can reach from the starting position, and
the game tree complexity (A) as the number of nodes in the smallest tree necessary to
solve the game. For a given game, it is possible to compute these numbers accurately but
approximations may provide useful information. Allis gave rough estimations of E and A

for each game, as shown in Table 1. In this table, ‘>’ (respectively ‘>=’, and ‘< <’) mean “is
stronger than” (respectively “is stronger than or equal to”, and “is clearly weaker than”).
‘H’ represents the best human player.

At first glance, Table 1 shows a correlation between game complexity, and the results
obtained by computers on the human scale. Chinook and Logistello are clearly better
than the best human player, in Checkers and Othello respectively. Deep Blue has a rank
similar to the best Chess player, and Handtalk is clearly weaker than the best human
Go players. All these games have increasing complexity. The classical model may be
said to consist of the set: evaluation function, move generation, and tree search. This has
been used successfully in Chess, Othello and Checkers. Its relative success depends on the
complexity of the game to which it is applied. One can observe a correlation between a
game’s complexity, and a program’s results on the human scale. This correlation can be
explained by the fact that the same model is being applied to similar games with different
complexities.

Table 1

Game log10(E) log10(A) Computer–human results

Checkers 17 32 Chinook > H

Othello 30 58 Logistello > H

Chess 50 123 Deep Blue >= H

Go 160 400 Handtalk < < H
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Table 2

Game log10(E) log10(A) Computer–human results

Checkers 17 32 Chinook > H

Othello 30 58 Logistello > H

9 × 9 Go 40 85 Strongest Go program < < H

Chess 50 123 Deep Blue >= H

15 × 15 Go-moku 100 80 The game is solved

19 × 19 Go 160 400 Strongest Go program < < H

2.5. Complexity of Go

It is important that the previous correlation be re-evaluated with respect to Go. First, the
classical model cannot work in Go without major adaptations. Moreover, we now add two
other games—9 × 9 Go and 15 × 15 Go-moku—to elaborate Table 2.

We can see that, on the one hand, 15 × 15 Go-moku is complex by Allis’ standards,
and yet Allis’ program succeeded in solving this game. On the other hand, 9 × 9 Go is
less complex than Chess by Allis’ standards, but the 9 × 9 programs are still weak when
compared with human players. 1 The complexity–result correlation has vanished, and this
is difficult to explain. Of course, one might argue that Computer 9 × 9 Go has not been
studied enough because of the limited interest that 9 × 9 Go enjoys compared to Chess.
We do not share this viewpoint—9 × 9 Go is an obstacle for the computer because there is
complexity inherent in the Evaluation Function.

For other games, like Othello, Checkers and Chess, good solutions have already been
found, using the classical model. To program these games, there is no reason to change the
model, which consists in an effective tree search, using a simple move generation heuristic,
and a simple evaluation function. With Go, however, researchers have to look for a new
model that enables programs to overcome the complexity of the game. They must reverse
the model, focus on the complexity of the evaluation function, and on move generation,
and only use tree search for verification.

3. Results

This section contains the results achieved by Computer Go since 1960. It first traces the
history of Computer Go, and then deals with the current competitions between programs.
In a third part, confrontations between man and machine are examined, and lastly we focus
on the results obtained with sub-problems of the game of Go such as Tsume-Go and late
endgames.

1 It is difficult to determine which program is the best on 9×9 boards, because of the lack of 9×9 competitions.
Nevertheless, Go4++ is at the top of the 9 × 9 Computer Go ladder on the Internet.



46 B. Bouzy, T. Cazenave / Artificial Intelligence 132 (2001) 39–103

3.1. History of Computer Go

It seems that the first Go program was written by D. Lefkovitz [81]. The first scientific
paper about Computer Go was published in 1963 [106], and it considered the possibility of
applying machine learning to the game of Go. The first Go program to beat a human player
(an absolute beginner at that time) was the program created by Zobrist [147,149]. It was
mainly based on the computation of a potential function that approximated the influence of
stones. Zobrist made another major contribution to computer games by devising a general,
and efficient, method for hashing a position. It consists of associating a random hash code
with each possible move in a game, the hash of a position being the XOR of all the moves
made to reach the position [148]. The second thesis on Computer Go is Ryder’s [111]. The
first Go programs were exclusively based on an influence function: a stone radiates influ-
ence on the surrounding intersections (the black stones radiate by using the opposite values
of the white stones), and the radiation decreases with the distance. These functions are still
used in most Go programs. For example, in Go Intellect [36–38], the influence is propor-
tional to 1/2distance, whereas it is proportional to 1/distance, in Many Faces of Go [50,51].

Since the early studies in this field, people have worked on sub-problems of the game
of Go—either small boards [133,134], or localized problems like the life and death of
groups [7].

The first Go program to play better than an absolute beginner was a program designed
by Bruce Wilcox. It illustrates the subsequent generation of Go programs that used abstract
representations of the board, and reasoned about groups. He developed the theory of sector
lines, dividing the board into zones, so as to reason about these zones [105,137]. The use
of abstractions was also studied by Friedenbach [55].

The next breakthrough was the intensive use of patterns to recognize typical situations
and to suggest moves. Goliath exemplifies this approach [13].

State-of-the-art programs use all these techniques, and rely on many rapid tactical
searches, as well as on slower searches on groups, and eventually on global searches. They
use both patterns and abstract data structures.

Current studies focus on combinatorial game theory [70,90], learning [30,48], abstrac-
tion, and planification [65,107,108], and cognitive modeling [15].

The eighties, saw Computer Go become a field of research, with international
competitions between programs. They also saw the first issue of a journal devoted to
Computer Go, as well as the release of the first versions of commercial programs. In the
nineties, many programs were developed, and competitions between programs flourished,
being regularly attended by up to 40 participants of all nationalities [53]. An analysis of the
current state of the Computer Go community has been published by Martin Müller [93].

3.2. Computer Go competitions

The oldest international Computer Go competition is the Ing cup. It has been organized
every year from 1987 until 2000. The winner of the Ing cup plays against young talented
Go players (see Section 3.3 below). Year 2000 was, unfortunately, the last year for the
Ing competition. A lot of programs were attracted to a recent competition, the FOST
cup, which takes place every year in Tokyo (except for 1997, when it was in Nagoya).
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Table 3
Winners of Ing cups

Year Winner

1987 Friday

1988 Codan

1989 Goliath

1990 Goliath

1991 Goliath

1992 Go Intellect

1993 Handtalk

1994 Go Intellect

1995 Handtalk

1996 Handtalk

1997 Handtalk

1998 Many Faces of Go

1999 Go4++

2000 Wulu

Table 4
Winners of FOST cups

Year Winner

1995 Handtalk

1996 Handtalk

1997 Handtalk

1998 Handtalk

1999 KCC Igo

Other competitions, like the Mind Sport Olympiad, the European, and the American,
championships, are organized on a regular basis.

The winners of the Ing cups and FOST cups are shown in Tables 3 and 4, respectively.
As well as the competitions, there is a permanent Internet Computer Go tournament—

the Computer Go ladder (http://www.cgl.ucsf.edu/go/ladder.html). It is a “handicap”
ladder; where the number of handicap stones that each participant can give to the
immediate lower program is explicitly tracked. Whenever the author of a program feels that
his program has been improved, he can issue a challenge, either to the program below (to
increase the number of handicap stones), or to the program above (to decrease the number
of handicap stones). New programs can join the ladder by challenging the program on the
“bottom rung” (no handicap). If the new program wins the challenge, it can successively
challenge higher programs until it loses. It can then start playing handicap challenges
to determine its exact ranking. Challenges are normally played on the IGS (Internet Go
Server, http://igs.joyjoy.net/) or NNGS (No Name Go Server, http://nngs.cosmic.org/). IGS
and NNGS provide any Go player in the world with an opponent to play games with, as
well as the opportunity to watch games, or comment on them, at any time. They are similar
to world wide Go clubs. Of course, Go programs may get an account. Many Faces of Go,
and GnuGo, are very often connected to these servers.

3.3. Programs versus human players

In addition to the confrontations that are organized every year, after the Ing cup, other
confrontations are organized, in an attempt to understand better the strengths and weak-
nesses of the programs. For example, after each FOST cup, the three best programs play
against human players. Handtalk received a Japanese 3rd Kyu diploma for winning its
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games. However, an opponent who knows the weaknesses of a program can use this knowl-
edge to win easily. For example, during AAAI-98, Janice Kim beat Handtalk, despite an
enormous handicap of more than twenty stones. Recently, Martin Müller beat Many Faces
of Go, despite a huge handicap of twenty-nine stones. Although Go programs have been
improved over the last few years, they are still much weaker than human players.

3.4. Tsume-Go

Most Go programs have Tsume-Go problem solvers. Some other programs are
entirely dedicated to Tsume-Go. The best Tsume-Go problem solver is Thomas Wolf’s
GoTools [140,142]. GoTools is a very strong Tsume-Go problem solver. It can solve 5-dan
problems (an amateur 5-dan is roughly equivalent to a professional 1-dan Go player). It
has even spotted an error in a dictionary of Tsume-Go problems. It can analyze complex
situations completely, and find unique winning moves that Go players find with great
difficulty. The problem solver has been used to generate thousands of Tsume-Go problems.

GoTools relies on Alpha-Beta searching, search heuristics, and numerous hand-coded,
and tuned, patterns for directing search, and for evaluating positions. Many heuristics used
in GoTools, including forward pruning, are well described in [142]. However, GoTools is
restricted to completely enclosed problems that contain thirteen or fewer empty intersec-
tions [141]. This restriction makes GoTools of little use for programs that play the entire
game, and for Tsume-Go problems that are to be solved in real games.

3.5. Combinatorial game theory

In some late endgame positions of the game of Go, where combinatorial game theory
applies, Wolfe’s program finds a sequence one point better than the sequence found by
professional players [8,9]. Müller’s [94] is another demonstration of the power of com-
binatorial game theory applied to Go endgames. It shows how Decomposition Search, a
tree search algorithm based on combinatorial game theory, gives clearly better results than
Alpha-Beta, when applied to specific endgame positions. Combinatorial game theory has
also been used by Howard Landman to find the number of eyes of a group [79], thus en-
abling a program to break down a life and death problem into a sum of games, so as to
reduce its complexity. Furthermore Müller [95] described a method for modeling “fights”
in Go, and computing their game values.

4. Evaluation

4.1. Introduction

This section deals with the major difficulty of Computer Go—building the Evaluation
Function (EF). The evaluation of a position is necessary for a program that wants to
associate a score with a game. Finding a “good” EF is very hard, and is undoubtedly the
biggest obstacle in Computer Go. Whenever Chess programmers—very confident in the
power and generality of tree search methods, and willing to try their chance in another
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game—ask Go programmers, very innocently, to give them the EF of Go, they are very
surprised to see that Go programmers cannot provide them with a simple, clear, and
efficient EF, as is the case in Chess. Instead of tree search optimizations, it is the discovery
of the EF for the game of Go that is the main task of Go programmers. Of course, each Go
programmer has their own EF. Every EF results from intensive modeling, programming,
and testing activities. Consequently, each EF is different from every other one, and no
agreed model has clearly emerged in the community. Therefore the task of presenting a Go
EF is far from being easy.

To be as clear as possible, we choose to proceed in two steps. First, we focus on the idea
that comes naturally to the new Go programmer’s mind—the concreteEF. It is simple,
and quick, but very inefficient when integrated into tree search algorithms. Then, we show
the conceptualEF of a Go program. More precisely, we choose to present the conceptual
EF of the program Indigo [15,17]. This has two advantages. First, it is clear—because we
are the programmers of this EF. Secondly, it works—since it is actually integrated into a
playing program that regularly attends the current Computer Go tournaments. To simplify
the reader’s task, we focus only on the main features of this EF. We have intentionally
hidden those parts which are needed to make the EF work in practice, but which are not
required for an overall understanding. We mention other formal descriptions, such as the
best programs’ ones [14,36,39], when they have been published. Given that most program-
mers wish to keep their algorithms secret, descriptions of the best commercial programs
are scarce. They are often personal communications [41,52,103,138,139].

4.2. Concrete evaluation

The first idea consists of defining a concrete EF by giving one value to each intersection
of the board: +1 for black intersections, and for empty intersections with black neighboring
intersections only; −1 for white intersections, and for empty intersections with white
neighboring intersections only; 0 elsewhere. Obviously, this EF cannot be simpler.

Explicit-control and implicit-control endgame positions
In Fig. 1 the intersections are explicitly controlled: an intersection controlled by one

color has the property of either having one stone of this color on it, or the impossibility of
putting another color stone on it. Such a position is reached after a large number of moves,
and the two players may have agreed on the control of the whole board a long time before.
Fig. 2 shows a board where the game stops earlier. In this position, the control is implicit.
Human players stop playing in this kind of implicit-control position. When considering the
positions that belong to the set of explicit-control endgame positions, the concrete EF gives
correct results, and is quickly computed. Unfortunately, this EF is relevant to positions of
this set only.

When considering implicit-control endgame positions, this concrete EF gives erroneous
results because human players use a large amount of knowledge to recognize them
as controlled. The knowledge contained in the concrete evaluation is not sufficient to
recognize them as terminal positions. For example, the empty intersections in the bottom
right of Fig. 2, and the “isolated” white stone in the same figure are considered as belonging
to Black by almost all Go players. Clearly, the concrete EF gives a false evaluation for
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Fig. 1. Fig. 2.

Table 5

Board size

9 × 9 13 × 13 19 × 19

Implicit-control endgame depth 60 120 250

Explicit-control endgame depth 160 340 720

them, and the knowledge necessary to explain why these intersections belong to Black
would take too long to explain.

But, one should see whether this concrete EF could be used, within a tree search
algorithm, so that the EF is invoked in explicit-control endgame positions only. Let us
define the depth of a position as the distance between the root node of the game tree and
the node of the position. Because human players stop their games on reaching agreement
on implicit control, the length of games between human players gives a rough estimate
of the depth of implicit-control endgame positions on different board sizes. In addition,
a program using the concrete EF, and playing against itself, enables us to estimate the
depth of explicit-control endgame positions. Computer experiments show that the average
depth of explicit-control endgame positions is twice the board size. These estimates are
summarized in Table 5. Although the concrete EF can be computed very quickly, modern
computers cannot complete searches down to this depth with the branching factor of Go.
As we are again confronted with the combinatorial obstacle, we must give up this approach.

Then, the next step is to try tree search with a conceptualEF. This EF will enable the
program to evaluate some positions at every stage of the game (in particular the set of
implicit-control endgame positions). Of course, because of the numerous possibilities, the
next obstacle is the definition of this EF. Anyway, this approach is used by the best current
Go programs.



B. Bouzy, T. Cazenave / Artificial Intelligence 132 (2001) 39–103 51

Fig. 3.

4.3. Conceptual evaluation

A worthwhile approach to finding a conceptual EF is to observe human players, to cap-
ture the useful concepts, and to transform them into computational ones. Some impor-
tant human concepts may be equated with their expressions inside game commentaries or
Go books. The main Go terms are “group”, “inside”, “outside”, “territory”, “interaction”,
“life” and “death”. Other important concepts, such as “inversion” and aggregation” corre-
spond to computational tasks, and we also present them. To illustrate our description, we
use Fig. 3.

We present the useful concepts in a bottom-up fashion. We start with small shapes which
enable the program to build abstract groups, and we end up with the whole EF. First,
we show topological concepts such as “connected group”, then we show morphological
concepts such as “territory”, “influence”, “morphological group”, “inside” and “outside”.
Finally, we show the concepts of “interaction”, “life” and “death”, together with
“inversion” and “aggregation”. These concepts will allow us to finish the presentation with
the full conceptual EF. Fig. 3 is used as a reference point to show examples of the different
concepts presented in this section.

“Connected group”
In this paragraph, the goal is to define “connected group”. The rules of the game define

strings of stones as same-colored 4-connex sets (one intersection has up to 4 neighbors),
but, in fact, “connected groups” are what players reason about.

Let us consider two neighboring strings of the same color. Two tree searches may be
performed (one search with Black playing first, and another search with White playing
first—see “Tree Search” or “Combinatorial Game Theory” sections of this paper) to
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Fig. 4. Fig. 5.

Fig. 6. Fig. 7.

Fig. 8. Fig. 9. Fig. 10.

determine whether these strings are virtually connected or not. When two strings are
virtually connected, they belong to the same “connected group”.

In Fig. 4, the two black strings are virtually connected. Even if White plays first, Black
will be able to connect (see Fig. 5). If Black plays first, the two strings will obviously be
connected. Fig. 4 is called a “connector”. Its notation will be ‘>’, so as to indicate that
the outcome of this elementary game is an effective connection whoever plays first. More
generally, two strings sharing two liberties are also part of the same connected group [36,
38] because if one player plays on one of them, the other player plays on the other one.

The two black strings in Fig. 6 are also virtually connected, as proved by the sequence
of Fig. 7. (White 3 is a forced move because White 1 is in “atari” after Black 2.) Fig. 6 is
another example of connector ‘>’.

Fig. 8 is not a connector, as previously described. If White plays first (Fig. 9), the
two black strings are actually disconnected by White 1 and White 3. If Black plays first
(Fig. 10), the two black strings are connected because Fig. 10 equals Fig. 4. In this case
(Fig. 8), the final state of the connector depends on who moves first, and we give the
value ‘*’ to the connector.

Then, the “connected groups” are defined as groups of strings linked with connectors ‘>’.
In our example, our program recognizes the connected group of Fig. 11.

A very important point to underline here is the fact that the construction of connected
groups implies the use of results from local tree searches having the goal of connection.
We will take up this point in the “Tree Search” section of this paper because this is specific
to the game of Go: the EF uses Tree Search. This is one important aspect of the EF in Go.



B. Bouzy, T. Cazenave / Artificial Intelligence 132 (2001) 39–103 53

Fig. 11.

Fig. 12.

“Inside”, “outside” and “morphological group”
The concepts “group”, “territory”, and “influence” are very closely linked to mathe-

matical morphology. We warmly invite the reader to refer to the “Mathematical morphol-
ogy” section of the paper so as to be familiar with some mathematical morphology opera-
tors [120], and with the operators X and Y used in this paragraph.

Let B (respectively W ) be the set of black (respectively white) intersections of the
Go board. The “morphological groups” are the connected sets of X(B) and of X(W).

Let G be a given morphological group. First, we call S(G) the “skeleton” of G as the
subset of G with intersections of the same color as G. Then we define the “inside” of G,
In(G), as the set G − S(G). Lastly, we call Out(G) the “outside” of G, and define it as the
set Y (S(G)) − G.

All these operations lead to a morphological view of positions. Fig. 12 shows the
morphological view of our example (Fig. 3). The big dark (respectively light) grey
squares correspond to the “insides” of black (respectively white) morphological groups,
and the small dark (respectively light) grey squares correspond to the “outsides” of black
(respectively white) morphological groups. The stones correspond to the skeletons.



54 B. Bouzy, T. Cazenave / Artificial Intelligence 132 (2001) 39–103

The building of groups
The notion of “group” is of paramount importance in modeling a Go position. For human

players, the notion of group corresponds neither to the connected group notion nor to the
morphological group notion, but to a certain extent to both notions. For programs, the
question of knowing which notion is better remains an open problem. Besides, deciding
which is the better notion, is a matter of integration within the whole program [14,36,50,
51].

The connected group notion may be used because the connection patterns between
stones can be demonstrated by tree searches. But this notion also raises diverse questions.
First, the program’s response time may be excessive because of the number of local tree
searches that have to be completed to determine the existence of connectors. Nevertheless,
this may be speeded up by using patterns, but then the problem is how to handle the patterns
database. Some learning techniques may be used to foster the expansion of the patterns
database. We shall discuss this point in the “Automatic knowledge generation” section of
this paper. Furthermore, another problem linked to the connected group notion is the fact
that the connection concept is given undue value. Thus, we might obtain a program which
systematically connects its groups before doing anything else.

However, the morphological group notion may also be chosen because it is more
intuitive, quicker to compute, and more remote from the connection notion. Unfortunately,
it is accurate only in some quiet positions. Therefore tree searches using this notion must
reach these quiet positions, if they are, to provide significant results. The more powerful
the computer is, the more successful it will be in reaching these quiet positions.

Go4++ uses another idea for building groups: instead of using connection whose values
are game-like values: >, *, <, it uses a probability value for each connection and builds a
connection map.

Number of “eyes”
The “inside” of a given group is crucial to the life of the group. Its vital contribution is

assessed by counting the number of “eyes” of the inside. The number of eyes depends on
who plays first. When an inside has more than two eyes, it is alive. For each connected set
of the inside, the vital contribution depends on its possibility to be split into other connected
sets. On the whole, for size-one-two-or-three connected sets, the number of eyes depends
on its boundary, and opponent stones. For sizes from four to about six, it also depends on its
shape and on the shape of prisoners. For example, Go players say that “straight 4 is alive”
and “square 4 is dead”. For size bigger than about six, the number of eyes becomes greater
than two. Each Go program must contain such expertise in counting eyes of a connected
set. It is very difficult to define complete and adequate rules for determining the number of
eyes of groups. Most of the current Go programs use heuristic rules. The most complete and
recent description of these rules are described in a reference paper [39] by Chen and Chen,
the authors of two of the best Go programs, Handtalk and Go Intellect. Landman’s [79] is
a combinatorial game approach study of eyes. Benson’s [7] is a mathematical study of real
life without alternating play.

Furthermore, the heuristic rules must be computed quickly. Therefore, Go programs
sometimes use tricks. For example, one heuristic rule says that a connected set whose
exterior has a length smaller than 6 has zero or one eye, and when greater than 10, has
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Fig. 13. Fig. 14. Fig. 15.

two eyes at least [14,39]. After assessing the number of eyes of each connected set, the
problem is to count the number of eyes of the whole group. When the connected sets of
the inside are not dependent on one another Chen and Chen [39] provide a clever method
using binary trees. Each connected set of the inside is a binary tree whose leaves contain
the number of eyes, depending on who plays first. The group side selects a binary tree and
replaces it by its left sub-tree. The opponent selects a binary tree and replaces it by its right
sub-tree and so on. The group side wants to maximize the number of eyes whereas the
opponent wants to minimize it. This abstract minimax search is simpler and faster than a
regular one on a concrete board.

“Interaction”
A group has friendly and opposing neighbors. For each couple of opposing groups,

“interaction” expresses the possibility for one group to dominate the other. The evaluation
of interaction between two opposing groups is determined by a set of rules whose
expression is very complicated and domain-dependent. Therefore, we shall limit the
presentation of an interaction to a single example as simple as possible. Let us examine the
black group in the middle right-hand side of the example of Fig. 3 (this group corresponds
to Fig. 13) and the white group located just above (see Fig. 14).

These two groups are opposing, their number of eyes and the size of their outside are not
sufficient. Therefore, we consider these groups as “weak”. It is important for the program
to compare the number of liberties of each weak group. In our example, the white group has
four liberties, and so has the black group. The player who plays first will either delete one of
his opponent’s liberties, or give more liberties to his own group, or do both. The difference
between the number of liberties of the two groups will be crucial in deciding which group
dominates the other. When the value (relative to zero) of the interaction depends on who
plays first, its value is designated ‘*’. Such is the case in our example. When one group
dominates the other whoever plays first, the interaction is ‘>’ for the dominating color.
For example, the interaction between the black group (corresponding to Fig. 15) which is
located at the bottom right of the position of Fig. 3, and the big white group encircling
it, is ‘>’ for White. In the next paragraph, we shall see that this fact will contribute to the
“death” of this black group.

“Death”, “inversion”, aggregation
The next important point consists of detecting dead groups—this constitutes the main

difference between the concrete EF and the conceptual EF. An error in the judgement
of life and death of one group brings about tremendous consequences in calculating the
value of the EF. Exact conditions for the death of a group should be given, or when this is
impossible, very restrictive conditions should be given to the program. In such conditions,
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Fig. 16.

the program must not conclude that a group is dead when it is not. A “death” happens
when a group answers all the following conditions: its number of eyes is not big enough;
its outside is not big enough; it has no friendly group to connect with; it has no interaction
with an opponent group whose value is different from ‘<’.

In our example, the group in Fig. 15 fulfils all these conditions. Therefore, it is “dead”.
On the contrary, the two weak groups in Figs. 13 and 14 have an interaction whose value
is ‘*’. They are not dead.

Once a group is dead, an “inversion” happens: the dead group changes its color
and merges with its neighbors. Fig. 16 shows the conceptual description following
the inversion, consequent upon the death of the black group in the bottom right
corner.

Here, the black group has disappeared, becoming part of a big new white group that is
located in the bottom edge. After an inversion, the program performs an aggregation to
cluster the dead group with its opponent groups into a bigger group.

Summary
Having identified the basic tools, we are now able to describe the general form of a

Go EF:

While dead groups are still being detected, perform the inversion and aggregation
processes.
Return the sum of the value of each intersection of the board (+1 for Black, and −1
for White).

At the end of a loop, if a death is detected, the program inverts and aggregates the dead
group to give birth to a new group. If no death is detected, the loop ends and the program
computes the addition of the value of each intersection of the board. (+1 if the intersection
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has a black group on it, −1 if the intersection has a white group on it, and 0 in the other
cases.)

Each loop gives rise to one, or zero, dead groups. Successive loops are necessary to
detect several dead groups. The evaluation process may alter the life and death status of
groups previously examined in response to new information determined in later cycles of
the evaluation process.

“Life and death” of groups, “tsumego”. . .
We have just seen the building process of an EF. However, human players also use the

terms “life” and “death”. Furthermore, they call the question of determining whether a
group is dead or alive, a “tsumego” problem. It is now time to link these human terms with
the previous discussion of concepts of our EF.

Let us first provide a few precise definitions. On the one hand, a general tsumego
problem arises when a group is weak by our standards. (This means that the number of
eyes, and the “outside” of the group, are not sufficient, and that the group has no interaction
whose value is not equal to ‘<’.) Such problems consist of finding a solution with the
following varying parameters: number of eyes of the inside, outside, and interactions.
On the other hand, basic tsumegos are problems where the outside and the interactions
are attached to insufficient values, hence the basic tsumego problem consists of finding a
solution to make only one parameter vary: the inside of the group.

Consequently, it can be easily understood that there is a considerable gap between the
two categories of tsumego. General tsumego problems are far more complex than the basic
ones. Nowadays, GoTools solves basic tsumego problems at dan level very smartly, and
quickly. (Here, basic does not necessarily mean simple: a lot of basic tsumego problems
can be situated at a professional level.) Chen and Chen [39] give a set of heuristic rules
to count the number of eyes of the inside of a group. However, Go playing programs are
not efficient enough to solve general tsumego problems, and unfortunately these problems
are the ones that are frequently met in actual games. The inability of Go programs to solve
these general tsumego problems constitutes the major obstacle to Computer Go.

4.4. Conclusion

In this section, we have dwelt on the simple case of the concreteEF. This EF cannot be
used within tree search because of the very small subset of positions in which it gives
correct answers: the explicit-control endgame positions subset. Then we presented the
conceptualEF. We highlighted the main features of an EF in Go: “group”, “inside”, “eye”,
“outside”, “interaction”, “life” and “death”. In spite of our effort to describe this function as
simply as possible, it remains quite complex. The first reason is to be found in the concept
of “group” which is crucial to Go and has many variants. The Computer Go community still
holds different views on its definition. The second reason lies in the difficulty in defining
intuitive, and visual, concepts such as “inside” and “outside”. Another explanation is the
very marked importance of interaction between groups. It is very difficult to determine
the state of a group without considering its surroundings. Lastly, as regards tree search, a
unique feature of an EF in Go is that it uses local tree searches. This aspect is new when
considering the other two-player, zero-sum, and complete information games where tree
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search simply uses the EF. The setting up of an efficient, correct, and complete, EF is the
major difficulty inherent in Computer Go.

5. Move generation

5.1. Introduction

Section 2 showed that a full global search was not possible in Go, and Section 4 pointed
out the complexity of the EF. However, the aim of a game playing program is neither
to search within trees nor to evaluate boards—these two activities are only means. The
aim is to generate moves, and to select only one. Therefore, after leaving tree search and
EF aside, the first trend in Computer Go was to generate moves by giving them a “priority”
or “urgency”, and then to select the move with the highest priority. The first Go programs
looked like expert systems which had neither evaluation nor tree search. That was the right
approach to try at that time, within such a complex domain [81,105]. Section 5.2 shows that
Move Generation (MG) still occupies a special place in current Go programs. In Section
5.3, we show the relevance of Goal Generation (GG). Then we present some examples of
MG associated to specific goals in Section 5.4, and we illustrate global MG, with the help
of another example, in Section 5.5.

5.2. The specific position of MG in current Go programs

To help MG in the first Go programs, two other components were necessary: an EF to
stop playing at the end of the game correctly; and a tree search module to check the tactical
status of some local sub-positions, or to find the biggest global move. Therefore, the crucial
question is to know the position of MG in connection with the EF and tree search. The EF
of a position is complex, and uses a lot of knowledge to describe the abstract objects which
are on the board. It is appropriate to try extending this knowledge, beyond descriptions
of objects to the description of actions, or moves, performed on the objects. In such a
case, the evaluation helps MG, and applies to both positions and moves. This approach is
used in contemporary Go programs—for example in Go Intellect [37], and also in Shogi
programs [60]. In this case, MG of Go programs is still very important.

5.3. Goal Generation

Moreover, when the programmer makes more extensive use of knowledge to describe
moves, he naturally enters the domain of Goal Generation. Instead of generating moves,
the program first generates the goals which may prove useful in winning the game. Once
the goal has been selected, a specific evaluation function adapted to this goal is chosen,
and a specific move generator is associated with this goal. A goal-oriented approach has
the advantage of reducing the complexity of the problem to be solved, but the drawback
may be the lack of global balance when more than one goal is relevant to winning the
game. Current programs such as Go Intellect [37,38], Goliath [14], and Many Faces of Go
use such a goal-oriented approach. Other explicit goal-oriented studies in Go are [55,65,66,
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108]. Decisive goals to be generated in a position are: “occupy big empty points”, “kill”,
“live”, “attack”, “defend” “groups” [38], “expand”, “reduce”, and “invade” “territories”.
Furthermore, the sub-goals may be “make eyes”, “destroy eyes”, “connect”, “cut groups”,
“capture”, “save strings”, and so on. [52] proposes a hierarchy of goals, which can be used
to build a Go program. For each goal, or sub-goal, the program generates special moves,
and performs goal-oriented tree search.

5.4. Goal-oriented MG

This subsection provides an example of moves generated according to the context of
goal-oriented MG. Let us consider the position in Fig. 3 and to its evaluation shown by
Fig. 16. The evaluation identifies three “weak” groups: the middle left white group, the top
right black group, and the top right white group. It also identifies territories to be expanded
or reduced: the bottom white territory, the middle left black territory, and the top black
territory. Each “weak” group, and each territory, generates goals to be pursued: attack or
defend a “weak” group; expand or reduce a territory.

Expanding/reducing territories
MG is quite simple in such a case. A program has a pattern database suggesting moves

according to this goal. Let us assume the database has the patterns shown in Figs. 17–20.
Let ‘X’ be the good move, and ‘Y’ the bad one. Then the MG generates the moves of
Fig. 21 for expanding or reducing the territories.

Fig. 17. Fig. 18. Fig. 19. Fig. 20.

When such generated moves are used, tree search allows one to select the best
expanding/reducing move. In the case of territory, when assuming that the depth-one
positions are still quiet, tree search selects the “best” expanding/reducing move. However,
in actual cases, depth-one positions are not necessarily quiet. Therefore, evaluations of
territory are not significant, and a quiescence search must be performed [40]. Instead of
performing tree search to select one move, another possibility is to refine the patterns for
expanding/reducing territory by specializing them as much as possible, and to associate
each of them with a value to be used by the move selector. In such cases, the program
selects the generated move with the best value. The approach of knowledge refinement is
performed manually in most Go programs, when their authors are strong Go players who
like introspection. However, this difficult refinement task can be achieved by the computer
itself. This aspect will be discussed in the “Automatic Knowledge Generation” section.
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Fig. 21.

Fig. 22.

Attacking/defending groups
The other relevant goal-oriented MG is the attack and defense of groups. A program

contains a pattern database suggesting moves relevant to this goal. Let the database contain
the patterns of Figs. 17–20, plus a rule advising to capture/defend the strings which belong
to the group, and whose Conway’s state is ‘*’ (see Combinatorial Game Theory section).
The generated moves are those of Fig. 22.
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Move ‘C’ is generated by the rule advising to save the white string whose state is ‘*’,
and belonging to the middle left white group. Other moves are generated by the pattern
database. Beyond this simple example, Go programs contain many more complex patterns.
For instance, the move generation is not symmetrical, and the pattern must also specify
which stones of the pattern belong to the “weak” group. A very good description of attack
and defense in Go Intellect can be found in [38]. In this section we have presented only
simple rules. In fact, rules are more complex in current Go programs: rules may advise a
set of moves for each side; they may contain information about the number of liberties of
the string; or they can make use of logical expressions.

5.5. Global MG

This subsection illustrates an example of moves generated at the global level. We
keep the example of Fig. 16. We assume that the global level considers only the two
kinds of goals described in the previous subsection: “expanding/reducing territories” and
“attacking/defending groups”.

First, in a Go program that, for speed performance, avoids tree search, the previous
MG may be used simply to provide a priority to each goal. For each goal, this priority
may be proportional both to the size (or size variation, in the case of territory) of the
object associated with the goal, and to a factor specific to the goal class. Therefore, a very
rough and simple method consists in selecting the move with the highest priority, which
is associated with the goal with the highest priority. This move decision process suffers
from a lack of coherence because the program does not verify whether the selected move
actually achieves its goal or not.

In our example, we assume that the priority of group is significantly higher than the
priority of territory. In such a case, the program decides to attack/defend the middle left
white group. Then, assuming that the rule which advises saving the string whose state is ‘*’,
has a higher priority than the patterns’ priority, the program chooses to play move ‘C’.

This method may be sharper with the help of a goal-oriented Tree Search so as to
eliminate the ineffective moves. For example, move ‘C’ will not work for White and the
TS will select ‘A’ or ‘D’. TS may eliminate all the moves of the goal-oriented MG. In
this case, the goal is unreachable. For instance, if the program is strong enough, it may
want to defend its white group and check that the moves ‘A’, ‘C’, ‘D’ do not reach the
goal. Therefore, the program will switch to the top right fight, and try moves ‘E’, ‘F’, ‘G’.
Another TS will conclude ‘E’ and ‘G’ are good moves to select at the global level.

5.6. Conclusion

The previous description of MG is similar to the plausible move heuristic, which is well-
known in computer games, together with selective search. It was used in the early days of
Computer Chess [58]. It is currently used in Computer Shogi [60,69,144], and it will still be
used for a long time in Computer Go. An explicit contribution to MG in Go is the reference
paper [37], which describes the move decision process of Go Intellect, and fits very well
with the above description. Like other programs, Go Intellect contains about 20 move
generators. Most of them are goal-oriented and heuristic. A “move coordinator” combines
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all the values by using linear combinations dynamically determined by the status of the
game. A “move checker” is provided to avoid obvious errors in the choice of candidate
moves. If a candidate move has a significantly higher value than the other ones, and if
it passes the move checker, then it is selected without look-ahead. But, when they are
several highly recommended candidate moves, Go Intellect uses global look-ahead on
these candidate moves, and selects the best one. Once more, the example of Go Intellect
shows how important static MG is. In some cases, MG may be sufficient to select the move
without global tree search, or, in other cases, sufficient to order the moves for tree search.

6. Tree search

6.1. Introduction

This section describes the link between Computer Go and Tree Search (TS). In classical
games like Chess, the goal of TS is to find a move among many moves, using an EF as
a black box. Numerous publications deal with this problem, and study the well-known
minimax and Alpha-Beta algorithms, as well as their variants [10,26,73,76,124]. A recent
trend has favored new approaches, such as the conspiracy numbers approach [83,116], and
proof-number search [2]. Computer Go follows this trend. But in Go, TS is completely
different because of the importance of locality. Until now, few methods have emerged. The
fundamental issue in Computer Go TS is selectivity. Section 6.2 deals with the different
TS methods used in current programs, and Section 6.3 focuses on the new parameters of TS
in Go.

6.2. Current use of tree search

To begin with, let us give the relevant information related to TS in the current
Go programs (Handtalk, Many Faces of Go, Go4++, Go Intellect, and GoAhead).

Handtalk generates very few (about 4) moves at the global level, and performs only
little tree search. Handtalk’s author believes that there are many more important things
than TS [42].

The author of Many Faces of Go underlines that his program has multiple TS
engines [52]: capturing a string, connecting two strings, making an eye, making a group
dead or alive, performing a global quiescence search. An important feature is that TS gives
a degree of reliability concerning the result of the search.

Michael Reiss says that Go4++ tries about 40 candidate moves, evaluates the score for
each move, and plays the move with the highest value [103].

Ken Chen [40] has recently given some heuristics that enable his program, Go Intellect,
to perform an efficient global selective search. His first heuristic consists in cutting off the
search at quiescence, returning the value of the evaluation function for stable positions in
the global game tree. The second one is to cut off search when a target value is reached.
The last heuristic is to associate an urgency value with a move, and to take this value into
account when evaluating the position. The author concludes that a balanced combination
of global selective search, and decomposition search [94] may well be the best approach to
Computer Go.
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Peter Woitke [138] says that his program does not calculate variations except for string
captures, life and death, and endgame positions.

6.3. Main features

In this section, we depict the main features of TS in Go, concentrating on the features
that make TS in Go different from TS in other games. To us, the most important element
is locality, since all moves in Go are played at a precise location on the board—in other
words, an intersection. We shall later examine other features, such as the goal of TS, the
definition of terminal positions, the initiative, abstraction, the dependency between local
situations, and finally uncertainty. All these features are linked to TS.

Locality
Given the size of a board, searching by selecting the moves localized on a part of the

board only is called a local TS. It is very similar to what human players do when they
examine different sequences of moves, at different places on the board, in a separate,
and independent, way. Local TS is a kind of selective search. It is an approximation of
the usual TS, which is called global TS. In practice, owing to current computer power,
global TS, unlike local TS, cannot be completed, and local TS becomes mandatory.
Even with greater computer power, a brute-force global search would not be an efficient
approach. There are too many clearly sub-optimal, or even bad, moves in a Go position.
A detailed analysis of a position can eliminate many useless moves. A goal-oriented global
search, or the splitting of the search into different local searches, are two options which
may be worth considering. Splitting the game into sub-games was proved to be useful in
the endgame, when used with decomposition search [94]. Applying this technique to the
middle game is a promising, but difficult, research area.

However, several obstacles arise when using local TS. First, the locality criterion has
to be defined. The problem of defining the ‘distance’, that discriminates between a ‘near’
move and a ‘far’ move, is open. Each Go program employs its own distance. It depends
on the data structures chosen in the program. Apart from problem in defining distance,
the second obstacle is to know when to stop the local TS. Unfortunately, a local TS often
goes beyond its departure point. This happens when all the local moves have been played,
and when the local situation is still uncertain and, therefore, impossible to evaluate. In
practice, the search has to be stopped. Consequently, the result of a local TS contains
some uncertainty. The last problem in using local TS is in the reconstruction of the
global result, given the results of local TS. To address this issue, the program simplifies
the problem by assuming that they are relatively independent of each other. Although
this hypothesis is wrong in theory, it is essential to make this assumption if we are to
get results. Assuming independence between local situations, the game of Go can be
considered as a sum of independent sub-games. It makes global TS look like a set of
local TS. Conway’s combinatorial game theory gives some clues for dealing with local
results. One of the most popular strategies among programs is based on thermographs (see
the section on combinatorial game theory). It consists of playing in the ‘hottest’ local game.
This particularity of Go is also used in decomposition search [94] that drastically reduces
the size of the global search.
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In short, locality allows TS to obtain a result otherwise impossible with a unique
global TS. Current difficulties linked to the locality criterion relate to the definition of
a good distance, the criterion for stopping a search, the specification of a measure of
uncertainty in the result of search, and the evaluation of the global result once the results of
local search are obtained. To circumvent these obstacles, formulating the hypothesis about
the independence between local games makes it possible to use Conway’s combinatorial
game theory.

Use, and goal, of tree search
In classical game programs, TS calls EF at the terminal nodes of the tree. In Go, EF

is complex and its value relies on the state of the board’s abstract elements. Moreover,
knowledge of the state of these elements relies on the results of local and abstract TS.
So, EF uses the results yielded by some TS. The usual order—whereby TS calls EF, as
in Chess—is reversed in Go. TS, which was the user in Chess, also becomes the supplier
in Go. Unlike in Chess, the precision of the result of EF in Go makes it necessary to perform
tactical TS, so as to find the state of the elements of the evaluation (connections, eyes, life
and death of groups, etc.). Here again, the goal of TS in Go is not, as in Chess, to select a
move, but to prove the value of a situation.

Problems specific to Minimax search in Go
Müller [96] identifies difficulties specific to Minimax search in Go: recognizing terminal

positions, pass moves, and local position repetitions, or ko. In Go, a position is terminal if
no more points are contested, and all points can be classified as black, white, or neutral.
Such classification is hard because of the complexity of the evaluation. A terminal position,
and a non-terminal position, may be very similar. In Go, passing is legal, and pass moves
must be generated during search. In positions where there is no good move, players are
allowed to pass instead of damaging their position. Adding pass moves to a tree search,
increases the size of the search space. Global position repetitions are forbidden by the rules,
but a local tree search must cope with local position repetitions, or ko. A local repetition
is produced by the possibility of playing outside the local position at any time during the
search. Ignoring the possibility of ko gives misleading results.

Initiative
Given the multiplicity of local situations, either one player or the other can play first in a

given local situation. To cope with this property, current programs are required to perform
at least two TS on a given local situation, the initiative being taken each time by a different
player. We can indicate that a local situation is described by two TS, using a notation such
as {B | W} where B (respectively W) is the situation found if Black (respectively White)
plays first. When the opponent does not answer to a move in a local situation, but rather
plays in a different local situation, the player can play a second move in a row in the first
local situation. There is a possibility that a player may play multiple moves in a row on
the same local situation. So, theoretically, multiple TS should be performed. In practice,
current Go programs do not consider all these possibilities that increase computation
time. The combinatorial game theory that takes these problems into account is used as
a reference. Recently some progress has been made in the safe cutting of combinatorial
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game trees [71]. This improvement is comparable to the improvement of Alpha-Beta over
Minimax, and is a breakthrough in the computation of the mean, and the temperature of
combinatorial games in which there is a dominant move at each stage.

Abstraction and local tree search with a goal
We have shown that the locality criterion reduces the global evaluation to a sum of local

evaluations, thus greatly reducing the complexity of the corresponding TS. But, to avoid
combinatorial explosion, the Computer Go programmer can also use abstraction in addition
to locality. Rather than locally evaluating a position, the program can first identify a typed
local goal—for example the connection of two strings, or the life of a group—and then
perform a TS with this goal. It reduces the complexity of the EF, as it only takes three
values (‘0’ if the goal cannot be achieved, ‘1’ if the goal is achieved, ‘?’ in other cases).
The EF is therefore rapidly computed. For a lot of typed local goals—such as connection,
eyes, and life and death of completely encircled groups—the corresponding TS is achieved
in a short time, and the program has certainties that are better than the non-termination
of the local evaluation TS. Moreover, the three-value EF enables the program to use the
Proof-Number Search algorithm, which generally obtains better results than Alpha-Beta.
However, it is impossible to obtain these abstract results without the inherent counterpart
to abstraction: simplification, and consequently inaccuracy.

Fig. 23 gives an example of a proof tree for the goal connect. Black is the friendly color,
and the goal is to connect the two black stones. The first move works (the leftmost arrow)
and, as it is an OR node, the other branches are cut. The moves at the OR nodes are given
by rules terminating on moves that can achieve the goal if two moves are played in a row by
the friendly color. This heuristic is used because these moves lead to positions containing
threats of winning by the friendly player, and therefore forced moves for the other player.

The rules of Fig. 24 indicate the moves to try at the OR levels of the proof trees. This
is visually explained in the first diagram of Fig. 24, where a tree is represented with the
color of the moves associated to the branches. The only available information is that Black
can reach the goal if it plays two moves in a row (state W of the first diagram). Otherwise,

Fig. 23.
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Fig. 24.

Fig. 25.

the three other combinations lead to unknown situations (state U). When Black plays the
moves advised by the rule, it switches to a threatening situation, represented by the tree
on the right of the first diagram. Black can now win the goal if it plays one move, and
therefore White now has to play to prevent Black from doing so.

The first rule of Fig. 24 is used to find the upper left move of the proof tree of Fig. 23.
Black plays on a liberty of the right black string; this liberty is neighboring a liberty of the
left Black string. So, if Black plays another move on the liberty of the left Black string,
the left and the right Black strings will be connected. The second rule of Fig. 24 advises
a move to threaten to make an eye, if Black plays another move on the empty lower right
intersection, it will then make an eye.

Fig. 25 gives the second proof tree developed by the Go program when White plays first,
and searches with the goal “Disconnect the two black stones”. In order to save space, we
have numbered the sequences of moves at the leaves of the tree (odd numbered moves are
black moves, and even numbered moves are white, single forced, moves). The two forced
white moves—at the root of the proof tree—are refuted by Black. As a result of the two
proof trees, Black can connect its two stones even if White plays first: the two black stones
are virtually connected.
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Fig. 26.

The last rule of Fig. 26 is used to find the forced move at the lowest AND node of
Fig. 25. The first rule of Fig. 26 is used to find the two forced moves at the root of the proof
tree of Fig. 25: these two moves are the only ones to be considered out of all the possible
moves. The second rule is used to find the only possible forced move to prevent an eye.
The visual definition of a forced move is given in the first diagram: a White move leads to
an unknown state (state U), whereas a Black move leads to a lost state for White (a lost
state L for White is a winning state W for Black: White loses if Black is connected in our
example).

Dependency/independence of local situations
Some local situations are highly dependent on one another—a move can influence two

local situations simultaneously. A local TS cannot be reduced to finding a good move, but
also has to take into account all the answers to the first move. Otherwise, the global move
choice will rely on incomplete information. At the top of the local TS, all the moves have
to be played. The dependency of neighboring local situations also implies the existence of
moves that do not work in any situation, but that are threats for each of them. These moves
enable the player to change one of the situations, thereby they are proved to be efficient.
A good program should be able to find them.

Uncertainty
Given the complexity of local situations, numerous local TS terminate without finding

the good move, or proving the goal. The results of the local TS remain uncertain. The
global level of the program has to handle the uncertainty of the non-terminated TS. There
are many ways to represent, and use, uncertainty in Go programs. For example, Gogol [30]
represents the uncertainty about the result of a game using a taxonomy of games. The
most general game is ‘U’—its value is unknown whoever plays first. A ‘WU’ game is a
game where one player can win the game if he plays first, and the result is unknown if
the other one plays first. A ‘WU’ game is a sub-class of the U games. ‘UL’ games can be
defined similarly. Other sub-classes of games can be defined such as ‘WUUU’ or ‘WL’.
This representation of uncertainty in games is useful to describe the elementary sub-games
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of the game of Go such as the game of capturing a string, the game of making an eye, the
game of connecting two strings, and so on. Indigo [18] also represents uncertainty in its
evaluation function using the local uncertainties identified in the local fights. Many Faces
of Go uses a confidence degree for the result of an evaluation during its TS.

6.4. Which algorithms?

To perform searches, some already existing techniques can be used, each offering
its advantages and drawbacks, depending on the context of the TS. For connection, or
Tsume-Go, problems, a three-value evaluation function can be used, as well as Proof-
Number Search (PN-Search) [2]. The drawback of PN-Search is the time used to copy
positions, and the memory required to store them. For all the problems with uncertainties,
quiescence search algorithms [6] are recommended. Other TS can use Alpha-Beta. Depth-
First search, which offers the advantage of looking at positions in such an order that the
results of the evaluation of the former position can be reused in order to evaluate the current
position rapidly. The incrementality principle (see the optimization section) can be used.
At depth zero, a local TS has to consider all the moves, so that the global TS can detect
those moves that may help achieve two goals simultaneously. The game of Go, as a sum
of games, shows that programs need both to perform an efficient TS, and to know how to
use its results. Combinatorial game theory solves some of the problems that arise when
combining the results of multiple TS (see the Combinatorial Game Theory section).

Many heuristics can be used when developing search trees. Thomas Wolf [142] gives
some heuristic search techniques used in GoTools. For example, at each node of the search
tree, the relevant moves are tried, and their usefulness is then evaluated. Other heuristics
consist in giving low priorities to moves that are forbidden for the opponent, in trying as
the second move the move of the opponent that has refuted the first move. Some heuristics
to improve global search are given by Ken Chen [40].

6.5. Conclusion

In this section, we have shown the specificity of tree search in Go. We have identified
many important features of tree search: locality, strong links with the evaluation function,
initiative, abstraction, dependency, and uncertainty. Computer Go enriches the classical
paradigm of tree search with new viewpoints. Moreover, the large branching factor of
Go calls for clever selective search techniques, either in tactical search (GoTools), or in
global search (Go Intellect). An increase in computer power will not allow an efficient
brute force global search. The special properties of the game of Go make selective [40],
and decomposition search [94], much more efficient than brute force global search.

7. Optimization

7.1. Introduction

As in other games, the speed of a program is of paramount importance in the game
of Go. Even if current problems are mainly linked to a good modeling of the Go player, it
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is still very important to do a fast tactical search, and to use knowledge efficiently, to have
a competitive Go program. Computer Go optimization techniques range from very low
level considerations, like the raw representation of the board, to high level considerations,
like the use of abstract strategic representations, so as to choose which search trees to
develop. Some mid-level optimizations are also used—for example calculations of the
search dependencies, can indicate whether, or not, to recalculate the search tree, if the move
played does not modify its result. Optimizations are time-consuming for the programmer.
Section 7.2 presents some possible optimization for pattern matching. Section 7.3 gives
some hints on how to stop tactical search early. Section 7.4 deals with the ordering of
the different loops, and tests that occurs in both manually, and automatically, generated
Go programs. Section 7.5 is about the choice of search algorithms. Section 7.6 explains
how to optimize the operators of mathematical morphology. Section 7.7 sheds light on the
optimization of string capture. Section 7.8 details the use of incrementality, and, finally,
Section 7.9 says a word about high level optimizations.

7.2. Pattern matching

The representation of the patterns, and the board to match the patterns on, is a problem
that every Go programmer has to face. The patterns represent small parts of the board. One
essential property of a string of stones lies in its number of liberties, so that patterns are
associated with conditions on the liberties of strings.

Fig. 27 gives examples of some patterns associated with a set of conditions. These
patterns represent an eye. Boon described how he optimized the pattern matcher of his
program, Goliath [13]. He represented 5×5 patterns, and 5×5 parts of the board, using 32-
bit strings, which enabled the program to perform very fast logical operations on integers to
match patterns with parts of the board. Other algorithms have been used to optimize pattern
matching. For example, the Explorer program uses Patricia trees to match patterns [90].
Gogol [34] represents the patterns in one or two 32-bit integer, and performs a binary
search on its sorted patterns list, so as to match them rapidly.

7.3. Stopping search early

The patterns and rules are used, both to select possibly interesting moves, and to stop
search early. The following trees are developed to prove that the two black stones are
connected. The left tree is developed by using only simple rules to find interesting moves,
whereas the right tree is developed by using more clever rules and patterns.

Fig. 27.
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Fig. 28.

Fig. 29.

The left tree of Fig. 28 has 31 nodes whereas the right tree has only 7 nodes. In the game
of Go, the overhead of matching simple patterns is largely compensated for by the time
gained thanks to search savings. Fig. 29 gives two patterns to cut the right tree. The first
pattern shows that there are only two moves to try at the root of the tree, and the second
one shows that Black can connect the two stones if he plays first.

7.4. Ordering the conditions of rules

Another approach to speed up the use of rule-based knowledge is program transforma-
tion. A metaprogram can make a program faster by automatically ordering the conditions
of the rules, or by partially evaluating the rules [28,33]. While reordering conditions is
very important for the performance of rules generated by a metaprogram, it is also im-
portant when hand-writing rules for a Go program. The following two rules are simple
examples that show how important a good order of conditions is.

connect(S1,S2,I1) : - color_intersection(I1,empty),

color_string(S1,C), color_string(S2,C),

liberty(I1,S1), liberty(I1,S2).

connect(S1,S2,I1) : - color_string(S1,C), color_string(S2,C),

liberty(I1,S1), liberty(I1,S2),

color_intersection(I1,empty).
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The two rules give the same results but do not have the same efficiency when I1 is
unknown, because there are more empty intersections than liberties of the string S1. When
based only on the number of free variables in a condition, reordering does not always work
well. Conditions, and therefore variables, are ordered once only, and not dynamically at
each match, because it saves more time. Reordering the conditions of a given rule optimally
is an NP-complete problem. To reorder conditions in our generated rules, a simple and
efficient algorithm can be used. It is based on the estimated number of subsequent nodes,
which the firing of a condition will create in the semi-unification tree. Here is a metarule
used to reorder conditions of generated rules:

branching( ListAtoms,ListBindVariables,

neighbor(X,Y),3.76) : -

member(neighbor(X,Y),ListAtoms),

member_term(X,ListBindVariables),

non_member_term(Y,ListBindVariables).

A metarule evaluates the branching factor of a condition based on the estimated mean
number of facts which match the condition in working memory. Metarules are fired each
time the system has to give a branching estimation for all the conditions left to be ordered.
When reordering a rule containing N conditions, the metarules will be fired N times—
the first time to choose the first condition, and at T time to choose the T th condition.
In the first reordering metarule above, the variable X is already present in some of the
conditions preceding the condition to be chosen. The variable Y is not present in the
preceding conditions. The condition ‘neighbor(X,Y)’ is therefore estimated to have
a branching factor of 3.76 which is the mean number of bindings of Y (that is, the mean
number of neighboring intersections of another intersection on a 19×19 grid—this number
can vary from 2 to 4).

The branching factors of all the conditions to be reordered are then compared, and
the condition with the lowest branching factor is chosen. The algorithm is very efficient
because it orders rules better than programmers do and because it runs fast, even for rules
containing numerous conditions.

7.5. Alpha-Beta or PN-Search: a difficult choice

Another practical problem lies in the use of an appropriate search algorithm for the
problem at hand. For example, during a tactical search, Alpha-Beta enables the program to
reuse the abstract information of the parent node (such as the numbers of liberties, or the
list of adjacent strings), in order incrementally to calculate information about the current
node, without occupying too much memory. On the contrary, a Best-First algorithm, like
Proof-Number Search, uses a lot of memory if incremental information is kept. Moreover,
it takes time to copy the information for each node. However, the trees developed with
PN-Search are often smaller than the trees developed with Alpha-Beta, because the sub-
games of the game of Go have a variable number of moves at each node. The choice
between these two algorithms depends on the data structures used, and on the sub-games
at hand. For example, Many Faces of Go uses Alpha-Beta incrementally, and updates the
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liberties of the strings at each move. On the contrary, Gogol uses PN-Search, copies the
raw board, and recalculates only the useful sets of liberties at each node.

7.6. Dilation and erosion

Dilation and erosion are crucial operations in a Go program. They are very often used
to calculate liberties, influence, territories, and, more generally, the neighborhood of an
object. Howard Landman uses an optimization to calculate the dilatation and erosion
operations of mathematical morphology. These operations are useful in calculating both
the influence of stones, and their associated territories. To assess dilatations and erosions
rapidly, the board can be represented as a bit string—an erosion corresponds to some
standard bit-string operations: SHIFT and OR.

7.7. String capture

An optimization used by Goliath [14] is to put many moves simultaneously in a tactical
search. When a given program calculates a ladder, it has to play the same two moves
repeatedly. Goliath plays all the moves at the same time.

For example in the left position of Fig. 30, to calculate whether the white stone—marked
with a triangle—in the lower left can be captured, the program tries, first, to play the liberty
of the stone that has the greatest number of second order liberties, and secondly, to play on
the other liberty to avoid capture. These same two moves are played repeatedly across the
board until the position in the second diagram of Fig. 30 is reached. Instead of analyzing
the position at each ply and playing the same moves every two plies, the program can be
optimized to go directly to the position of the second diagram of Fig. 30. This optimization
enables the program to save time in 80 percent of the ladders calculated by Goliath. Instead
of analyzing the position for each move of the ladder, Goliath analyzes the position only
once.

Another optimization, specific to string capture, consists of ordering moves during a
tactical search. For example, when trying to save a string by playing on its liberties, it is

Fig. 30.
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usually better to try first the moves on the intersections likely to give the string as many
liberties as possible.

7.8. Incrementality

Bouzy [20] introduces the concept of the “incrementality” of a tactical search.
Incrementality is an example of a mid-level optimization, which aims at associating a
tactical search with a “track” that represents parts of the board involved in the result of
the search. If a move is played in the track of an object, then the object must be deleted.
If a move is played outside the track of an object, then the object remains unmodified.
Whenever a move is played, the program knows which search remains unchanged, and
thus saves time. In practice, incrementality of tactical search enables a program to play
twice as fast on a 19 × 19 board. With the track mechanism, the programming task is
nicely simplified, but the incrementality problem has become a definition problem. If the
programmer defines a track bigger than the optimal one, then the behavior of the program
remains correct but is slower than it could be. If the programmer defines a smaller track
than the optimal one, then the program forgets to destroy some objects and the program
quickly adopts an erratic behavior. The problem of correctly specifying the tracks of objects
is difficult to solve.

7.9. High-level optimizations

An example of a high level optimization is the use of an abstract strategic representation
of the board that allows the program to focus on some important tactical computations, and
to neglect useless ones that might be time-consuming [31,66,107,108].

8. Combinatorial game theory

8.1. Introduction

This section deals with those basic features of combinatorial game theory which have
so far been useful to Computer Go. The reader may refer to [43] or [64] to have a
mathematical overview, to [44] for a recreational presentation, and to [8] or [89] for the
practical applications of the theory to Computer Go. These different viewpoints will allow
the novice to understand the surprising differences between this theory and classical games
theory [136]. Combinatorial game theory is also called Conway’s game theory.

8.2. The results of combinatorial game theory when applied to Computer Go

The results of applying the theory to the problem of playing the whole game are few,
and limited. However, with specific sub-problems, like late endgame positions, this theory
is highly successful. This section deals with these excellent results, and then points out
the difficulties in extending them to other well-identified concepts of Go—“eyes”, “ko” or
“fights”—and to complete games.
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Late endgame positions or “yose”
During the endgame phase, it is partly possible to model a position as the sum of games.

We list four key features of such a model. The first feature corresponds to the identification
of “groups” and “territories”. As a game nears its end, the identification of “groups” and
“territories” becomes easier, and thus, the transformation from the position into a list
of sub-games becomes possible. In addition, when moves are played, the identification
of “groups” and “territories” becomes more stable. Stability is our second feature. It is
fundamental because, if not verified, the local tree searches in each sub-game would
become pointless. Furthermore, as a game nears its end, the moves played in one sub-
game have less influence on other sub-games. Therefore, near the end of the game, the
sub-games become independent. Independence of sub-games constitutes the third feature.
Besides, as a game nears its end, local searches become shorter. Therefore local searches
can be fully completed and the sub-games described. Completion of tree searches is the
fourth feature.

Thereby, in positions in which criteria for the use of these four features are fulfilled,
Berlekamp and Wolfe have obtained outstanding results. When an abstract description
of the positions, in terms of groups and territories, is given to Berlekamp’s model, it
finds moves that have the same result, or even one point more, than professional players’
moves [8,9]. This result had a tremendous impact in the Go community because everybody
thought professional players were playing the endgame optimally. Berlekamp’s model
lucidly demonstrated the contrary. It would take too long to dwell on the mathematical
details explaining why the result is so good. In outline, one can simply say that
combinatorial game theory employs infinitesimal numbers (like up, downand *) which
describe the sub-games. They transform themselves into one point when the number of
sub-games is odd. The proof, and the test positions, can be found in [9].

This result is correct, of course, when the four sets of criteria are fulfilled, and it
should be capable of being extended to the endgame with the help of more robust
tools than Berlekamp’s model. Martin Müller has been working on applying this theory
to Go endgames for several years [89–92]. Müller’s [94] describes Decomposition
Search, which is an algorithm which identifies safe groups, and territories, in a position,
finds the sub-games, computes their value, and selects the sub-game. In test positions,
Decomposition Search performs much better than a classical alpha-beta. This paper is a
very nice demonstration of the power of the combinatorial game theory applied to the
endgame in Go.

Recently Kao [71] described a method for computing the mean, and the temperature,
of combinatorial games, where each player can have only one option at each local non-
terminal position. This method is based on the stable theorem, and on the algorithm
MT-Search (Mean-Temperature Search). Although the method can be applied to games
other than Go endgames, MT-Search works very well with endgame positions. The
improvements in the computation of mean and temperature, due to this method, are
comparable to the improvement of Alpha-Beta over Minimax.

“Eyes”
After the success in the endgame, mathematicians have investigated other sub-problems

to be found in actual games. Eyes are very useful for life and death problems.
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Landman’s [79] is the reference paper that shows the link between Conway’s theory and
the eye concept of the game of Go.

“Ko”
Game theory is far more complex in loopy games. A loopy game is a game whose graph

contains loops. In the game of Go, loops are forbidden by the rules, but when you model
the whole game as a sum of sub-games, its sub-games may be loopy. For a given sub-game
containing a “ko”, the first player takes the ko; as the rules do not allow the second player
to take the ko again, he plays elsewhere—in another sub-game. If the first player also plays
elsewhere with the following move, then the global position has changed, and the second
player is now allowed to take the ko in the given sub-game, whose sub-position is the same
as two moves before. Therefore, the given sub-game must be considered as loopy under
such modeling. Not only does Berlekamp’s model encompass ko, but also studies about
ko and combinatorial game theory classify the different contexts of ko [92]. Spight [122]
extended the thermograph theory to process multiple-ko positions.

“Fights”
Müller [95] described a method for modeling “fights” in Go, and computing their game

values. In order to test the validity of the approach, this method was integrated into his
program, Explorer, and tested on specific fight positions. The results were very impressive:
its system outperformed the current best programs such as Go4++ and Many Faces of Go.
This illustrates the power of describing of Go local situations by game values.

The whole game
Unfortunately, the conditions for applying Conway’s theory to the whole game are

not fulfilled. In brief, even if you have a sub-games model of the global game, the sub-
games are greatly dependent on one another. Each model of a global position into sub-
games already contains an approximation. Nevertheless, Conway’s theory is a source of
inspiration to model the game of Go for the computer. This paragraph shows the work
accomplished using this perspective.

Goliath [14]—three times world champion in 1989, 1990 and 1991—modeled local
searches with switches. Explorer [89,90] is, by far, the program that uses the theory in
the most efficient way. For example, Explorer contains tools to compute thermographs
of games. In addition, Indigo [15] uses Conway’s classification (positive, negative, fuzzy
or zero). Unfortunately, local searches in some sub-games cannot be completed, and such
sub-games are placed in the ‘unknown’ category. Furthermore, Gogol [30] does not strictly
follow this classification. It defines a taxonomy of games. ‘U’ games correspond to games
whose searches are unknown, or not completed. ‘W’ games correspond to won games,
and ‘L’ games to lost games. Then, ‘U’ games can be classified into ‘WU’, ‘WL’, or
‘UL’ games. A ‘WU’ game is a game where the left outcome is ‘W’, and its right outcome
is ‘U’, and so on. This classification cannot be justified from a theoretical viewpoint,
nevertheless it is preferable to Conway’s in practice, because it takes the unknown sub-
games into account and gives results, even when a local search is not fully completed.
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8.3. Conclusion

Until now, classical game theory [136] has been very well adapted to Chess, Checkers,
and Othello, but has lacked power sufficient to model the game of Go. Combinatorial game
theory partly makes up for this weak point by giving optimal strategies for playing in some
specific endgame positions [9]. It also gives ideas for defining sub-optimal strategies for
playing the whole game. Before this theory can be used for the whole game, extensive
research has to be done. Future researches might focus on the splitting of the global game
into dependent sub-games (rather than independent ones). In addition, experiments should
be carried out which relate to searches that may not end. Needless to say, this theory
remains to be put into practice, and adapted to all phases of the game.

9. Automatic generation of knowledge

Writing a Go program is difficult because the most efficient programs use a lot of
knowledge. Consequently, methods that generate Go knowledge automatically offer great
advantages. Research into automatic generation of knowledge in mind games has mainly
concentrated on the generation of an evaluation function. However, the evaluation of a
position in the game of Go requires many specific concepts, and extensive reasoning. As
the game of Go can be divided into subgames, a reasonable goal for knowledge generating
systems is to generate knowledge for these subgames, and not for the whole game of Go.

Knowledge can be generated through various techniques. Neural networks learning
can be used to learn to select good tactical moves with backpropagation, as shown in
Section 9.1. With the help of temporal difference methods, it can also be used to learn to
evaluate the probability of an intersection becoming territory. In Section 9.2 we will show
how neural networks have learned enough Go knowledge to enable some neural-network-
based programs to be competitive. Knowledge is a key component of Go programs—in
Section 9.3 we describe the kind of knowledge used in Go programs, and we insist on the
difficulty in acquiring and maintaining it. The problems related to knowledge maintenance,
and knowledge acquisition, are partially solved by the declarative learning techniques
presented in Sections 9.4 (retrograde analysis), and 9.5 (logic metaprogramming). These
techniques have proved useful in generating many useful tactical rules that increase the
tactical problem-solving abilities of Go programs. Some other techniques for pattern
generation have also been tried, such as the ecological algorithm of Kojima [75]—
discussed in Section 9.6.

9.1. Backpropagation

Golem [47] is a program that learns to select tactical moves by using neural networks.
Golem starts by doing a tactical search to find the status of strings having three liberties,
or fewer—the goal of the search being to find whether, or not, the string can be captured.
Golem uses a neural network to discard moves when they are too numerous. The inputs
of the neural network correspond to those abstract concepts of the game of Go which are
likely to influence the capture of strings.
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The results of the tactical searches, and some abstract concepts, are used as inputs of
another neural network. This network is trained on games between professional players.
For each position, the goal of Golem is to rank the professional move above another move
chosen randomly. After 2000 attempts, it ranks the moves in the test database correctly
87 percent of times. Golem has learnt to beat Many Faces of Go at the latter’s low level.

9.2. Temporal Differences (TD) learning

TD learning has been successfully applied to Backgammon by Tesauro [129]. It might
also be applied successfully to other games. Two fundamentally different abilities can be
defined in games. The first one is to foresee the likely continuation of a game, either by
tree search, or by reasoning. The second one is the ability to assess a position accurately,
using patterns and some features of the position, but without calculating explicit move.
Backgammon is a suitable game for TD learning because positional judgements are more
important. Unlike Chess it does not require the ability to see many moves ahead. The
game of Go is also played by using a lot of positional judgement, and knowledge about
the shape of stones. The application of TD methods to the game of Go has yielded
reasonable results, but Go programs based only on TD learning do not play as well as
the best Go programs. However, the TD method has great potential to improve programs
that already have a lot of knowledge. Two programs have so far used this method for the
game of Go. Chronologically, the first one is the program designed by Schraudolph, Dayan
and Sejnowski, the second one—that plays better but relies on more Go knowledge—is
NeuroGo by Markus Enzenberger.

The program of Schraudolph, Dayan and Sejnowski
Schraudolph, Dayan and Sejnowski have applied TD learning to Go in the same way that

Tesauro applied it to Backgammon [119]. Their first experiment was to train a completely
connected 82–40–1 network by letting it play stochastically against itself.

As the game of Go is deterministic, moves are chosen stochastically, so as to explore
enough state space. The best moves have an exponentially higher probability of being
chosen than the worse ones. The output of the network learned to forecast the number
of points by which Black or White would win. This network had to play 659,000 games
before beating Wally, the worst public domain Go program. The direct application of TD to
Go yields disappointing results in comparison to Backgammon. However, improvements
can be made to enable TD to learn better. These improvements concern the architecture,
the inputs, and the output of the network.

The first improvement consists of changing the output. The goal of the game of Go is
to occupy as much territory as possible. Each intersection occupied by a color, at the end
of the game, counts as one point. It is therefore worthwhile to make the network learn
the final destiny of each intersection. It is easier to find the destiny of an intersection
than the final score. Moreover, the game of Go has properties that make it possible to
constrain the architecture of the network. For example, when colors are reversed, or when
a reflection, or a rotation, of the board is performed, the properties of the shape of stones
remain unchanged. Color symmetry is taken into account by giving opposite values to
the inputs for Black and White (+1 for Black, −1 for White), and by putting the bias
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neuron to −1 when White has to play first. Weight adjustments take into account rotations
and symmetries by sharing equivalent weights, and by adding the errors resulting from
different, but equivalent, intersections.

The improved network was trained against three opponents: a random move generator,
as well as the Wally program (a very weak, and simple, public domain Go program), and
Many Faces of Go. The program learned to beat Wally after 2000 games, and Many Faces
of Go, at its weak level, by playing 1000 games. Another network playing against itself
learned to beat Wally after 3000 games. To date, these programs have never participated in
any Computer Go competitions.

The NeuroGo program
NeuroGo is a program that uses more elaborate inputs than the former program [48].

In NeuroGo too, the goal of learning is to foresee whether an intersection will be friendly
territory at the end of the game. The input of the network is constituted of units. One unit
can be either an empty intersection, or a string of stones. The architecture of the network
is therefore dependent on the position being considered.

Each unit has its own properties. Each string possesses four properties: having 1, 2, 3, 4,
or � 5 liberties; having 1, 2, 3, or � 4 stones; the possibility of being captured if the color
of the string moves first; the possibility of being captured if the color of the string plays
second. The properties of empty intersections are: Black has 1, 2, 3, 4, or � 5 liberties
if he plays on the intersection; White has 1, 2, 3, 4, or � 5 liberties if he plays on the
intersection; Black can be captured if he plays on this intersection; White can be captured
if he plays on this intersection; eye for Black in 0, 1, 2, or � 3, unanswered moves; eye for
White in 0, 1, 2, or � 3 moves.

In addition to calculating the properties of the units, NeuroGo detects groups of stones
(sets of connected strings), and the distances between strings (connectable in one move
or in two moves). It uses this information to link units with weights corresponding to the
relations between the units. The set of units of a position is converted into a graph. This
graph enables the program to build relations within the neural network. There cannot be
more than one relation between two units. If there is more than one, NeuroGo decides
which one is the most important, and selects it. Two neurons of adjacent layers that
correspond to two units are linked by the weight corresponding to their relation.

Neurogo has learned to beat ‘Many Faces of Go’ at an average level (8/20) after 4500
games against itself whereas the program by Schraudolph & al. only beat it at a weak
level (3/20). NeuroGo participates in the Internet Computer Go ladder. It plays on small
9 × 9 boards as well as on 19 × 19 boards. It is currently situated in the top third of the
ladder of Computer Go programs.

Conclusion and future work
To learn how to play well against another program, TD based programs have to play

thousands of games, but they have a considerable advantage: they do not require much work
from their programmer (NeuroGo is 5000 lines of C). As often with this type of learning,
it is facilitated by the quality of the inputs of the neural network. Such is the case with
NeuroGo, which learns better than another program which has only a physical description
of the board. An interesting study would be to use the elaborate knowledge of the best
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programs as an input of networks trained by TD methods. This might greatly upgrade the
level of programs. A problem might arise with the learning time, which would be much
longer than with a simple representation. However, this approach offers the advantage of
having the highest ratio Level of the program/Time to develop it.

9.3. Knowledge in Go programs

Knowledge in Go programs is constituted of specialized procedures to compute some
specific Go concepts, and of pattern databases. The Go knowledge contained in the
procedures ranges from simple concepts, such as the number of liberties of a string, to
high level ones, such as the safety of a group. Ken Chen, the author of Go Intellect (one
of the best Go programs), provides a good description of the knowledge contained in a
competitive Go program [38]. Go Intellect has 3 types of frames: Blocks (i.e., strings in our
terminology), Chains (sets of strongly connected strings), and Groups (loosely connected
strings), each with about 30, 10, and 50 slots, respectively. The knowledge of Go Intellect is
made up of the frame updating procedures, of about twenty goal-oriented move generators,
and two pattern libraries. A good example of the heuristic rules used to evaluate the life
and death of a group can be found in [39]. The rules combine patterns, conditions on
the intersections, and exceptions. Approximately forty rules are described in this paper.
They rely on other knowledge, such as knowledge about the possibility of connecting a
string to an intersection. A typical Go program contains approximately 3000 patterns. The
number of patterns in a program is highly dependent on the design, and the architecture, of
the program. For example, Goemate has only 40 patterns, whereas Golois has millions of
patterns.

Acquiring this specialized knowledge is very difficult. The traditional way for the
programmer is to add knowledge. The difficulty lies in performing introspection.
New knowledge interacts with existing knowledge in unpredictable ways. Whenever a
programmer tries to improve his program by adding knowledge relating to a particular
sub-problem, this new knowledge often interacts with other knowledge in another part
of the program, and finally produces bad results. Furthermore, even if the programmer is
a very good Go player, he has difficulties in finding rules without exceptions. He often
inserts new rules, forgetting the exceptions, and produces bad results again.

A potential solution to the knowledge acquisition problem is declarative knowledge
learning. Some Go knowledge can be formalized, and can be considered independently
of other knowledge. The insertion of a new rule into a declarative setting does not interfere
with previous knowledge. Moreover, the use of automatic generating techniques produces a
large amount of knowledge, which would take too long to write down for any programmer.
The following two subsections highlight these techniques.

9.4. Generation of rules using retrograde analysis

Retrograde analysis
Retrograde analysis has already been used for one-and-two-player games. Given some

final positions, retrograde analysis enumerates all the positions, and associates them with
a value that can be Won, Lost, or Drawn for two players games, as well as with the
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minimal distance to the final position. Well-known results of retrograde analysis are the
Chess endgame databases [123,131,132], and the Checkers endgame databases of Chinook.
The Chess endgame databases have enabled the Chess community to discover new Chess
knowledge [98], and they enable programs to play perfectly some endgames that are hard
for human players. The endgame databases of Chinook, for Checkers, have contributed to
its world champion title [78,118].

For single agent problems, retrograde analysis has been used to reduce the number of
necessary nodes to solve standard 15-Puzzle problems. The generated database enables the
program to divide the number of explored nodes by 1000 [45]. Retrograde analysis has also
been used to find optimal solutions to Rubik’s Cube [77]. The dynamic creation of pattern
databases has been used as real time learning to accelerate Sokoban problem solving [68].

Generation of tactical Go rules by retrograde analysis
The generation of simple patterns by retrograde analysis has been performed for the

game of Go regarding life, eyes, and connection [27,29]. The work has been extended
to tactical rules—in other words, patterns associated with external conditions [34]. The
generated patterns (and associated rules) fit in small rectangular shapes (2 ×2 to 6×3) that
represent parts of the board. The external conditions correspond to constraints on relations
with objects that are outside the rectangle. The possible objects are friendly strings, enemy
strings, and empty intersections.

Each intersection in a pattern can take on three different values (black, white or
empty). An empty intersection can be associated with two different external conditions: the
minimum number of liberties a friendly move would have when played on the intersection,
and the maximum number of liberties an enemy move would have when played on the
intersection. Each string in a pattern can be associated with one condition: the minimum
number of liberties for a friendly string, and the maximum number of liberties for an enemy
string. Each of the external conditions can take on three different values. The three possible
conditions associated to enemy strings are : 0 external liberties, <=1 external liberties, and
other (>1 external liberties). The three possible conditions associated to friendly strings
are: 0 external liberties, >=1 external liberties, and >=2 external liberties. Therefore, there
are three possibilities for each string, and nine possibilities for each empty intersection.
A pattern that contains two empty intersections on the edge of the pattern and two strings
generates 9 × 9 × 3 × 3 = 729 different rules.

One can compare the number of rules covered by this representation with the number of
endgame positions in Checkers [78]. There are 406,309,208,481 endgame positions, with
8 pieces, in Checkers, whereas the number of possible rules in a 5×3 rectangle in the center
of a Go board is 59,241,069,331,995. The number of possible patterns is much lower, as
there are at most three possible values for each intersection of a pattern (Friend, Enemy,
and Empty). Therefore there are 315 possible patterns for a 5 × 3 rectangle pattern in the
center. Table 6 provides the total number of possible patterns and rules corresponding to
the size of the pattern and its location.

The algorithms used to generate these rules are slightly different from those used to
generate endgame databases.

Usually, when one generates a pattern database, or an endgame database, only one or
two bits are used to code each element (these two bits are used to code one of the three
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Table 6

Size of the Location Total number of Total number of
pattern possible patterns possible rules

2 × 2 Corner 81 5,133

3 × 2 Corner 729 184,137

4 × 2 Corner 6,561 6,498,165

3 × 3 Corner 19,683 23,719,791

5 × 2 Corner 59,049 228,469,857

4 × 3 Corner 531,441 3,238,523,049

6 × 2 Corner 531,441 8,023,996,893

5 × 3 Corner 14,348,907 464,991,949,659

3 × 2 Side 729 541,101

4 × 2 Side 6,561 18,513,177

3 × 3 Side 19,683 191,890,599

5 × 2 Side 59,049 631,651,053

4 × 3 Side 531,441 20,752,761,345

6 × 2 Side 531,441 21,555,306,681

3 × 4 Side 531,441 68,094,804,369

5 × 3 Side 14,348,907 2,353,796,975,871

3 × 3 Center 19,683 663,693,159

4 × 3 Center 531,441 239,111,765,601

5 × 3 Center 14,348,907 59,241,069,331,995

values: Won, Lost or Drawn) [45,68,77,78]. The bit arrays can be compressed by using
standard compressing methods, such as Run-Length Encoding, which is used by Chinook.
The positions are sometimes associated with a byte that stores the minimal number of
moves before winning, or the maximal number of moves before losing [118,131,132].

Given the large number of possible rules, this representation is not used for databases of
rules. Instead, each pattern is represented by a 32-bit unsigned integer, associated with a
set of conditions. The only rules that are kept are the rules about won and winning states,
since they represent only a small proportion of the possible rules. This allows one to store
the generated rules within a reasonable space. Table 7 provides the number of generated
rules for eyes on the side.

A simple algorithm to generate pattern databases consists of going through all possible
rules, and for each rule testing whether it is in the Won state for the given goal. After each
traverse of the possible rules, any new rules can be found only one move before the already
discovered rules. So, to discover all the possible rules, the algorithm has to traverse all the
possible rules many times, as long as there are new rules discovered during the previous
crossing. This algorithm is not suited to Go rules’ databases since the number of possible
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Table 7

Size of the Location Number of Number of
pattern won rules winning rules

3 × 2 Side 11 108

4 × 2 Side 171 1,081

3 × 3 Side 727 5,570

5 × 2 Side 1,661 5,952

4 × 3 Side 38,909 146,272

3 × 4 Side 14,966 62,329

6 × 2 Side 18,194 31,500

Fig. 31.

rules is very high. A more appropriate algorithm starts from the already generated rules,
and undoes the previous rules so as to find the new rules directly, and without looking at
all the possible rules to find them.

Fig. 31 shows some generated rules whose aim is to make the black group live in the
corner. The use of generated rules greatly enhances the life and death problem solving
abilities of Golois for open groups [34].

9.5. Explanation-based generalization and metaprogramming

For domains—like the game of Go—that have a strong underlying theory, a deductive
learning method has been developed. It is called Explanation-Based Generalization
(EBG) [88], and also Explanation-Based Learning (EBL) [46]. Many studies have
focused on the application of this method to planning [86,87]. This type of learning is
particularly useful for games. Many programs using deductive learning for games have
been described [85,100], the work by Pitrat on Chess [101] marking the onset of these
studies.

The application of EBG to the game of Go has been partially formalized by Kojima [74],
and has been developed for, and efficiently applied to, many subproblems of the game
of Go, using the Introspect system [30].

Explanation-based generalization
The use of EBG for the game of Go has been attempted by Kojima [74] for the capture

of stones. As shown in Fig. 32, the program starts with the positions where stones are
captured, and undoes moves to find positions where stones are captured some moves ahead.
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Fig. 32.

The information used by the generated rules concerns only the colors of stones and their
positions. There is other, more abstract, and potentially very useful information which is
not used to generate interesting rules: e.g., the number of liberties of the strings, or the
number of shared liberties between strings. The system does not find the forced moves
by itself. On the contrary, they are given to it. Despite its limits, this approach offers the
advantage of uncovering a way to apply EBG to the game of Go.

Introspect
Introspect is a system for metaprogramming, and for EBG, that creates tactical rules

for multiple games, and more particularly for the game of Go. It uses predicate logic—for
example a rule to connect two strings is represented as:

connect(S1,S2,I,Color) : -

color_string(S1,Color), color_string(S2,Color),

liberty(I,S1), liberty(I,S2).

This rule shows that the two strings of stones, S1 and S2, can be connected with a move of
color Color, on intersection I, if S1 and S2 are also of color Color, and if intersection I
is a liberty of S1, and a liberty of S2.

The generated rules deal with the tactical sub-goals of the game of Go: capturing a string,
making a string live, connecting two strings, disconnecting two strings, making an eye, and
removing an eye. They are used to develop tactical tree searches, and to stop search at an
earlier stage, as well as to reduce the number of moves to be examined. Their originality
comes from the fact they are theorems of the game of Go. Thanks to this characteristic,
the set of forced moves they conclude on is complete. In this way, if we can prove that
none of this limited number of forced moves works, then we have proved that no move
works. Similarly, when at some node a rule concludes that a goal is achieved, search can
be stopped, with the certainty that the goal is effectively achieved whatever the surrounding
situation.

The rules that are used to develop the OR nodes of the search trees are created, either by
unfolding rules concluding on a won goal, or a winning goal [5,56,126], or by EBG [30,
46,62,88,101].

As well as the classical operations on logic programs that enable Introspect to generate
rules for the OR nodes, Introspect also uses metaprograms, which are specific to games,
to generate rules about forced moves for the AND nodes of the search trees [32]. These
specific metaprograms analyze a winning rule, and find all the moves that invalidate a
condition of this rule. All these invalidating moves constitute the complete set of forced
moves that prevent the opponent from achieving the goal that the winning rule concludes
on.



84 B. Bouzy, T. Cazenave / Artificial Intelligence 132 (2001) 39–103

But EBG systems create too much knowledge, and sometimes useless rules that slow
the system down. To avoid this phenomenon, called the utility problem, and to enable the
system to limit itself, Introspect only generates rules that contain fewer than 200 conditions,
and that do not conclude on sets of more than 5 forced moves. Unlike other domains, where
the utility problem is a major obstacle, good results can be obtained for the game of Go
with quite simple utility knowledge.

The following rule is generated by Introspect regarding the capture of a string. It
concludes on the capture of the string represented by variable S. The color of the move
to capture is represented by variable C, and the intersection on which the move should be
played to capture the string is represented by variable I:

move_to_capture(C,S,I) : -

opposite_color(C1,C),

color_string(S,C1),

number_of_liberties_of_string(S,2),

minimum_number_of_liberties_of_adjacent_strings(S,2),

liberty_string(I,S),

minimum_number_of_liberties_if_move(I,C,2),

liberty_string(I1,S),

I= \ = I1,

number_of_liberties_of_string_if_move(S, [I,C], [I1,C1],1).

The condition minimum_number_of_liberties_of_adjacent_strings(S,
2) verifies that all the strings adjacent to the string S have at least two liberties.
The condition minimum_number_of_liberties_if_move(I,C,2) checks that
a move of color C, on the intersection I, has at least two liberties. The condition
number_of_liberties_of_string_if_move(S,[I,C],[I1,C1],1) veri-
fies that a move of color C, on intersection I, followed by a move of color C1, on in-
tersection I1 has only one liberty. An illustration of this rule is Fig. 33 where Black can
capture the White string by playing one of its liberties.

The tactical programs generated by Introspect are used by the Go program Gogol. They
have enabled it to obtain decent results in Computer Go competitions [53]. Once generated,
the rules are gathered in a tree of conditions, and compiled into C. When they are integrated
into Gogol, they amount to one million lines of C.

Introspect is also a general game, and a metaprogramming, system [100,102] that has
generated knowledge for domains other than the game of Go [30].

Fig. 33.
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9.6. Pattern generation by an ecological algorithm

Kojima has also used an ecological algorithm to discover patterns for the game of
Go [75]. He uses games between professional players as examples. The rules contain
conditions on the relative positions of the stones (friendly or enemy stones, relative
coordinates), and on their location on the board (on the edge or not). Each rule is considered
as an individual, and has an activation value. A learning example is considered as food, that
can be eaten by the rules which match this example. If no rule matches, then a new rule,
that matches the example, is created. When a rule has an activation value above a given
threshold, it gives birth to a more specific rule. Each rule eats at each step of the algorithm,
so its activation value decreases. The rules with an activation value of 0 die. This approach
to pattern generation has not yet generated a competitive Go program.

9.7. Conclusion

Many learning methods have been tried for the game of Go. So far, none has given
very astonishing results. However, the temporal differences method, and the program
specialization method (either by retrograde analysis or by metaprogramming), give
interesting results, when compared to more classical methods for game programming: they
are undoubtedly the most promising learning methods for the game of Go.

The automatic generation of knowledge still needs to be investigated more: the game of
Go is the domain, ‘par excellence’, where learning, and program specialization, methods
can be very useful. One of the principal difficulties in programming the game of Go lies in
finding knowledge, and then in writing a relevant program that represents this knowledge.
Such is the current task of learning Go programs.

10. Monte Carlo Go

10.1. Monte Carlo methods in physics

The variation principle lies at the heart of theoretical physics. The path taken by a system
in a state space is an extremum. The mechanisms used to find extrema are fundamental in
classical physics, in relativistic physics, and in quantum physics, as well. Monte Carlo
methods [72,99] are derived from statistical physics. A statistical system is composed of
a large number of particles. The problem is to know how the speed, and the position,
of particles evolve over time. A feature of the evolution of the system is that a quantity,
such as the energy, or the activity, is minimized. For example, at high temperatures, a
metal is liquid, and its atoms move randomly, but when the metal is cooled, the atoms
put themselves into a configuration that minimizes energy—a crystalline structure. This
process is called annealing. The longer the cooling, the closer to the minimum of energy
the cooled structure is.

To do Monte Carlo simulations, one has to choose a representation of the possible states
of a system. Then, one has to define a set of ergodic, elementary, moves, that allows one to
go through the state space of configurations, step by step. For a given configuration, moves
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are generated randomly. The evolution of the system is approximately assessed by choosing
a move with a probability that depends on the growth in activity resulting from the move.
For example, the probability p(E) that a particle has the energy E at a temperature T

is p(E) = exp(−E/kT ), k being the Boltzmann constant. The move that increases the
energy by �E is accepted with the probability p = exp(−�E/kT ).

10.2. Simulated annealing

For a function of many variables, algorithms that follow the gradient, to find lower values
of the function enable us to find a local minimum of the function. However, if we look for
a global minimum of a complex, and possibly non-differentiable, function, there is little
chance of finding it by using such a method. Simulated annealing is more appropriate
to find global minima of complex functions that contain many variables, because it also
generates moves that increase the value of the function.

To find a global minimum, simulated annealing plays moves randomly in state space.
If the value of the function decreases after the move, the move is accepted. If the move
increases the value of the function, the move is accepted with a probability that decreases
exponentially with the increase of the value of the function, and with the temperature. The
temperature decreases with time, depending on the time given to the algorithm to find a
solution.

Simulated annealing has been applied to combinatorial optimization problems like the
traveling salesman problem. There are N ! different paths between the N cities. Simulated
annealing finds a solution, close to the optimal solution, in a polynomial time. The
algorithm begins with a random ordering of the cities. There are two types of possible
moves. The first type of move is to reverse the order of several cities, which are next
to one another on the path. The other type of move is to move several neighboring cities
somewhere else on the path. Simulated annealing has also been used to find an arrangement
of 25 cards, in a 5 × 5 table, so that the values of the rows, columns, and diagonals, when
interpreted as hands in Poker, are maximized. Simulated annealing is successful, and both
much faster, and simpler, than other methods.

10.3. The Gobble program

The Gobble program [22] uses simulated annealing to find an approximation of the
best move on a 9 × 9 board. The principle is the same as the Go-moku program designed
by Grigoriev [59]. It consists of randomly developing the different possible games, and
in calculating statistics based on the results of the sequences of moves, after each possible
next move. The goal of the program is to find an approximation of the value of the different
possible moves. To this end, it plays each sequence of moves until the last moves that do
not fill eyes. In case of captures, many moves can be played at the same intersection. At
the end of a sequence of moves, it counts the number of points for Black, and for White.
The final values, associated to an intersection, are the mean of the results corresponding to
the sequences of moves in which Black has been the first to play at the intersection.

The problem consists of finding the order in which to play the possible moves in the
different sequences. The order of moves must be different, and must bring information for
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each sequence. Therefore, Gobble uses a different vector of moves for each sequence. The
first legal move in the sequence of moves is chosen to continue the sequence, each vector of
moves corresponds to a sequence. For all sequences, the initial order of the vector of moves
is found by sorting the moves according to their approximate values calculated with the
former sequences. This initial order is then modified by going through the vector of moves
and by swapping two neighboring moves with a probability that depends on temperature.
As sequences are being played, temperature decreases, and the probability that two moves
are swapped also decreases.

The moves are sorted according to their values. The value is initialized to 0, for the
first iteration, and then it is updated for each sequence of moves. Then, the program goes
through the list of moves, and swaps two neighboring moves with the probability pswap.
The probability p(n) that a move is moved n steps down is:

p(n) = (pswap)
n = exp(−n/T ),

so

T = −1/ ln(pswap).

pswap decreases linearly down to 0, depending on the number of sequences. Then, for some
sequences, pswap remains at 0, in order to find the nearest local extremum. The useful
information obtained from random sequences is proportionate to the number of sequences
already played. The mean error, �v, is proportional to the square root of the number of
sequences:

�v ∼ 1/
√

n.

Therefore, to calculate the value of a move to a precision of within one-point, and given that
the possible values for the results of the sequences can vary by 100 points, approximately
10,000 sequences have to be played.

Gobble uses two strategies: strategy A: play between 500 and 1000 sequences to find the
moves; strategy B: play 400 sequences, retain the 4 best moves, and play 400 sequences
for each of these 4 moves. Using strategy A, and despite giving/receiving three handicap
stones, Gobble plays equal games against Many Faces of Go. Using strategy B, and despite
giving/receiving two handicap stones, Gobble plays correctly against Many Faces of Go.

A specific property of the game of Go, which is taken into account by Gobble to evaluate
the moves, lies in the localization of the moves. Locally, the game of Go is more stable
than Chess, for example. However, the results are only an approximation of the real result,
since the localization of moves is not always verified, and the state space of Go not always
regular.

The Gobble approach is original, because it relies on a very limited knowledge of Go—
‘do not fill your own eyes’—and yet it results in an average Go program. Given the
simplicity of the program, its performances are amazing. This approach can undoubtedly
be improved, and conclusions can be drawn from these experiments for other game
programming problems.
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11. Mathematical morphology

11.1. Introduction

This section highlights the link between image processing and Computer Go. The size
of the board (19 × 19) on which the game is played, is much smaller than the size
of the pictures (more than 1000 × 1000) processed in the pattern recognition domain.
Therefore, the complexity of the game of Go is situated far below the complexity of
image processing. Nevertheless these two domains have a common, and efficient, tool—
mathematical morphology [120]. Hence, this section shows how to use mathematical
morphology within Computer Go, and, more specifically, within the EF of a Go program.

11.2. Mathematical morphology and the game of Go

Mathematical morphology is a very useful technique in the field of image processing.
For example, some operators enable systems to delete the details whose size ranks below
a given scale. Fuzzy mathematical morphology [12] is another refinement that also gives
good results. Besides, some Go programmers use it in their program. At the very beginning
of Computer Go, the Zobrist model [147], without using it explicitly, already performed
mathematical morphology. This model was composed of iterative dilations. It enabled
the programs to recognize “influence” as human players do. This model is the ancestor
of the refinements used today in Go programs. For example, the Indigo program makes
explicit use of mathematical morphology [15,16] for territory-, and influence-modeling.
GnuGo [57] also uses this model. This section focuses on “territories”, and “influence”,
recognition, and provides information to help understand the Evaluation Function section.

First, let us mention some basic operators of mathematical morphology. Let A be a set
of elements, and let D(A) be the morphological dilation of A—composed of A, plus the
neighboring elements of A. E(A) is the morphological erosion of A. It is composed of A,
minus the elements which are neighbors of the complement of A. ExtBound(A) is the
morphological external boundary of A; given by ExtBound(A) = D(A)−A. IntBound(A)
is the morphological internal boundary of A; given by IntBound(A) = A − E(A).
Closing(A) is the morphological closing of A; where Closing(A) = E(D(A)). Opening(A)
is the morphological opening of A; given by Opening(A) = D(E(A)). The opening and
closing operators are very helpful in image processing.

We can then adapt these operators by adding two refinements: numerical inputs
and outputs, and two colors (Black and White). We start by assigning values of +64
(respectively −64) to black (respectively white) intersections, and 0 elsewhere. The
D operator now consists of adding to the absolute value of an intersection of one color,
the number of neighboring intersections of this color, provided that all the neighboring
intersections are empty, or of that color. For an empty intersection, which has neighboring
intersections of the same color, D also adds the number of neighboring intersections
of this color to the absolute value of the intersection. D is a numerical refinement of
the classical dilation operator mentioned above. Similarly, the E operator now consists
of subtracting from the absolute value of an intersection of one color, the number of
neighboring intersections whose value is either zero, or whose value corresponds to the
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Fig. 34.

Fig. 35.

opposite color of the intersection. E also makes sure that the sign of the value does not
change—otherwise, the value becomes zero. E is therefore a numerical refinement of
classical morphological erosion.

Once these refinements are added, we use the operators X = E ∗ E ∗ · · · ∗ E ∗ D ∗ D ∗
· · ·∗D, and Y = D ∗D ∗ · · ·∗D where E is composed ‘e’ times, and D, ‘d’ times. So as to
give the same result as the identity operator in positions where no “territory” is recognized,
a link between ‘e’ and ‘d’ must be established. For example, in the trivial position, with
only one stone located in the middle of the board, X must give the same result as the
identity operator. Bouzy [16] has shown that e = d ∗ (d − 1) + 1, in which ‘d’ is a scaling
factor. The bigger ‘d’ is, the larger the scale of recognized territories is.
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Fig. 36.

Fig. 34 illustrates an example position on which we applied operators X and Y . Fig. 35
shows the result of Y , with d = 5, and e = 0. Fig. 36 shows the result of X, with
d = 5 and, e = 21. Fig. 35 shows what Go players call “influence” and Fig. 36 shows
the “territories” quite accurately. These two points explain the success of mathematical
morphology in the game of Go [15]. This technique was part of the EF of the Indigo
program [15,16], and now has been integrated in the GnuGo program [57].

12. Cognitive science

12.1. Introduction

This section deals with studies carried out in Cognitive Science which use the game of
Go as an investigation aid. After showing that the game of Go is an appropriate domain for
cognitive science studies, this section investigates the different studies conducted so far.

12.2. The game of Go is appropriate for carrying out cognitive science studies

Cognitive science experiments, aiming at exploring the human cognitive system when it
interacts with the real world, have to be set up inside sufficiently complex domains. Thus,
the subjects will be able to use their cognitive faculties that will be studied through the
experiment. So as to be effective in practice, the experiments must not be too complex.
Therefore, domains whose complexity is neither too low, nor too high, are perfectly
adapted. Furthermore, the knowledge used by the subjects during the experiments must
be representative of common sense knowledge used by human beings in the real world.
Therefore, the domain to be studied must also keep real world features. To sum up,
Cognitive Science requires domains which are representative of the real world, and whose
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complexity lies between the complexity of recreational experiments and the complexity of
real-world, but technically ineffective, experiments.

Langston [80] defends the idea that the game of Go is a simplification of the real world
while keeping its main features by the following arguments. The Go universe has two
spatial dimensions and one temporal dimension whereas the real world has three spatial
dimensions and one temporal dimension. In addition, the Go universe is finite—there are
361 intersections on a Go board, and these are endowed with a color which has a discrete
value (black, white, or empty). However, the real world is made up of an infinity of points.
Furthermore, an infinity of viewpoints describes each point, and each viewpoint takes on
a value belonging to an infinite set. Unlike the real world, the Go universe is formal: the
rules of the game define the characteristics of the game with great accuracy.

Actually, the main advantage of the game of Go compared to other games is that it is
visual: a position with its black, white, or empty intersections must not be perceived simply
as such, but rather in an abstract way. In these conditions, the player may identify complex
objects. The strength of a player relies on his skill in recognizing complex objects where
only concrete information (black, white, and empty intersections) can be found. This aspect
does not exist, as markedly, in other games such as Chess, Checkers, or Othello, where the
objects of the reasoning process are similarly defined by the rules of the game.

Therefore, it is quite justifiable to choose the game of Go as a domain to perform
cognitive experiments [15,112]. We shall now see which studies, using the game of Go,
have been done so far within the cognitive science community.

12.3. Related works

The different studies in cognitive science that have been carried out using the game of
Go may be classified according to the chosen method: on the one hand measuring response
times for re-building observed, and hidden, positions—on the other hand analyzing verbal
reports.

Measuring response times
In Chess, Chase and Simon [35] measured time intervals separating the actions of the

subjects who were reconstructing positions, once seen, but later hidden. They showed
that expert players use information organized in “chunks”. A chunk can be defined as
a cluster of information. The authors observed that, because Chess experts build actual
Chess positions more quickly, they seem to have a greater memory capacity than non-
experts. However, with random positions, the authors observed that the experts’ and the
non-experts’ performances were equal. The explanation given by the authors was that
the number of memorized chunks is equal for experts and non-experts, but that experts
memorize more specialized chunks. This argument would explain the time differences
when building actual Chess positions.

In Go, this experiment has been done again [104]. As in Chess, the experiment shows
that experts use more specialized chunks than non-experts. Nevertheless, the conclusions
were more difficult to reach in Go. Unlike in Chess, the chunks in Go are more complex,
as they are not linearly structured, but may be chosen differently, according to different
viewpoints.
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Burmeister and Wiles [23] describe experiments which use “inferential” information
to build Go positions. This contrasts with “perceptual” information which was used in
previous experiments [35,61]. A more detailed study of strong Japanese players (6 to
8 dan) was then conducted [24]. The authors conclude that the explanation for moves is an
important factor in memorizing positions, and sequences of moves. Thus, strong players
clearly remember their games against other strong players, but they have more difficulty
remembering their games against weak players, because weak moves have no meaning
for them. Consequently, the strong player must use a representation that he is not familiar
with—this reduces his memorizing capacities.

Analyzing verbal reports
Scores of cognitive studies rely on natural language production. First, let us sum up

the arguments for, and against, both the use, and the study, of such types of information,
irrespective of the domain. On the methodological side, Ericsson and Simon [49] propose
a method to set up cognitive models relying on verbal reports. The success of the method
simply lies in a verbal production model included within the cognitive model. Thus, the
validation of the cognitive model is simply performed by comparing the verbal production
of the cognitive model with that of the subjects. Concerning the results obtained in
analyzing verbal reports, Vermersch [135] defends the idea that it is possible to extract
knowledge from many everyday life experiments such as driving a car, and baking a cake.
The author thinks that the extraction can be done with such precision that accurate cognitive
models could be built. On the contrary, Nisbett and Wilson [97] argue that psychological
experiments in general, and verbal reports in particular, are strongly distorted by the
experimenters themselves. For the authors, such experimenters uncover only what they
are looking for, and if the experimenters could make other experiments aiming at proving
the contrary, they would do so. As a result, there are many divergent opinions as to the
effectiveness of experiments which are based on verbal reports.

In Go, Saito and Yoshikawa [112,113,115] showed that human players use natural
language terms to play their games. The authors recorded the players’ voices when they
were playing games, or solving Go problems. They also used specialized hardware to
record the subjects’ eye movements, as they looked at the Go board. The authors observed
that friendly and opposing moves are very often named. Small tree searches appear in
verbal expressions, and proverbs can be found. The authors conclude that natural language
plays an important role in playing Go. They also show that the use of terms depends
on the players’ rankings [145]. So as to demonstrate this, they developed the “iceberg
model” [146], which shows that most knowledge is implicit, and not conscious, while little
information is explicitly present in verbal reports.

Bouzy [15] presents a cognitive model of the Go player. It was designed using the
following steps. First, a cognitive model was based on strong players’ verbal reports. The
cognitive model had to be validated with the construction of a computational model. But,
unfortunately, the results of that computational model were not conclusive. Therefore, the
cognitive model was simplified, in a second stage, by using novice players’ verbalizations.
Surprisingly, the level of the computational model based on verbal reports by novice
players was higher than the level of the program based on experts’ verbal reports. This
obvious paradox may be explained by the fact that the expert verbalization-based model
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used high level knowledge, without referring to the low-level knowledge. Therefore, this
model—with high level knowledge—was not grounded on solid foundations, and the
corresponding program had poor results. The low-level knowledge of the other program
enabled it to play at a novice level with better results.

Nevertheless, the most significant conclusion of this work was to be found elsewhere.
Of course, the program’s implementation required the use of concepts explicitly expressed
in the reports, but it also required the use of further concepts, which are called hidden
concepts, because they cannot be explicitly identified in the reports. Thereby, it was
assumed that a correspondence existed between the hidden concepts, on the one hand,
and the implicit knowledge used by human players, on the other hand. This hypothesis
bears great similarity to the iceberg model of [146]. This correspondence hypothesis being
assumed, Bouzy [15,19] has shown the existence of human players’ implicit knowledge
such as, the group concept, the inside/outside concept (see “Evaluation Function” section),
and the incrementality concept [20] (see “Optimization” section). Incidentally, these
concepts are very intuitive, and very useful in helping to play Go. They do not appear
very clearly in Go players’ verbal reports, thus making it difficult to set up a correct model
in Go. Nevertheless, this approach may let researchers obtain insights into the way that
humans use implicit knowledge. In [19] the author argues that when one tries a computer
implementation in a complex domain, such as Go, one uncovers concepts, which make it
easier to model the domain. These concepts do not correspond, either to verbal reports, or
to natural language terms in that domain. As these concepts does not correspond to explicit
knowledge, the hypothesis is that they correspond to implicit knowledge.

12.4. Conclusion

The game of Go, as a real world simplification that keeps its essential features, is an
appropriate domain in which to conduct cognitive studies [80]. Reitman [104] reproduced
the Chess experiment [35] in Go; their conclusions were far from being obvious because
the chunks were not “linearly” organized, but corresponded to different viewpoints which
were difficult to classify. Bouzy [15] has shown that the bulk of Go players’ knowledge is
not conscious, by extracting this knowledge through the implementation on the computer.
Yoshikawa et al. [146] not only argue that natural language plays an important role in Go,
but also maintain that Go players’ knowledge is implicit, to a large extent.

13. Conclusion

13.1. Summary

In this paper, we have presented Computer Go, and its numerous links with AI. First, we
have shown, in Section 2, that the complexity of Go is much higher than the complexity of
the other two-player complete information games. This complexity is not only due to the
number of possible moves in a given position, but also to the cost of the evaluation of a
position.

In Section 3, we mentioned that the best Go programs obtain average results, although
it took several years to develop these programs. The best current programs are Goemate,
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Go4++, Many Faces of Go, Wulu and Go Intellect. However, with sub-problems of Go
(life and death problems, and endgame problems), the results are excellent. GoTools [140,
142] solves life and death problems whose level corresponds to the best amateur players.
Berlekamp and Wolfe [9] describe a mathematical model that finds move sequences better
than professional players’ sequences, in some specific late endgame positions.

In contrast to the excellent results obtained with these sub-problems, the weak
performance of programs in a complete game might be explained by the difficulty
in extending the problem solving tools to become more general tools. It is vital that
Go programs find good solutions in cases which occur in actual games. For example, it
is difficult to solve life and death problems for groups that are not completely surrounded,
although GoTools solves them very well for completely surrounded groups [142]. Section 4
described a Go evaluation function whose complexity is due to its many inter-dependent
concepts: grouping, inside and outside, interaction, territory, influence, life, and death.
Numerous definitions of these concepts are possible. The choices made in the design
of each program bring about a loss of information. Moreover, these choices have to be
implemented in an efficient fashion, thus making the design of an evaluation function even
more difficult.

As described in Section 4, a characteristic of the evaluation function is the use of local
tree searches on simple goals. To build the EF, TS on tactical goals, such as string capture,
connection between strings, and eye verification, are commonly performed. The results of
these tactical goals are used to build groups at the upper abstraction level. Other TS—on
more abstract goals, such as life and death of groups, and interactions between groups—
may be performed at a second stage. All these results are processed to build the EF at
the global abstraction level. The EF calculation is slow enough to prevent a classical TS.
Contrary to other games in which TS uses EF, in Go EF uses TS.

Section 5 mentioned that the first Go programs were expert systems with a single Move
Generation module, but with neither an Evaluation Function, nor Tree Search. So far,
although Evaluation Function, and Tree Search, modules have been necessary to write
the current Go programs, the Move Generation module has occupied and still occupies a
special position. Instead of being used by Tree Search, it can be used to select the move
directly. Because TS can only be performed locally, or in a goal-oriented way, it must be
performed after the computation of a static strategic position evaluation which requires an
important amount of knowledge. Therefore, it is worth keeping the knowledge method, and
having some static goal, and/or move evaluations, after the position evaluation. This time-
saving approach is far from being simple. Move selection undoubtedly remains complex,
and needs accurate domain-dependent knowledge. Global move generation has multiple
facets, and must be supplemented by a tree search module, which is used to check that
goals have been achieved.

Section 6 considered the characteristics of TS. First, the local situations of a position
may be viewed as independent of one another, and the global TS may be approximated
by several local TS—-that is why a local TS is a selective TS, where moves sufficiently
far away from preceding ones are discarded. Another important feature of the game of Go
is that, for each local situation, each player may be the first to play, which necessitates
the computation of at least two TS for each local situation. The evaluation function is the
result of local TS on simple goals, and can contain some uncertainty. A quiet position can
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be defined as a position in which there is no uncertainty. Quiescence search algorithms are
thus appropriate in this approach.

The programmer can choose between many search algorithms. For the goals that use
data structures, which can be incrementally updated, Alpha-Beta is the algorithm of choice.
When the number of moves for each position varies a lot, it may be better to use PN-Search.
For a given sub-problem, the search algorithm is chosen according to its characteristics.

Given the computational complexity of Go playing programs, it is important to perform
computations as fast as possible. It is then possible to compute longer sequences of
moves, and to obtain more information about the position, so as to make a more accurate
evaluation. Section 7 listed the numerous possible optimizations at each level of abstraction
of a program. For example, incrementally calculating the liberties of strings has become a
widely accepted technique at the lowest level of the program. When computing a tactical
search, the same sequences of moves are often repeated. An interesting optimization
consists of playing sequences of moves, rather than playing one move at a time, and
reanalyzing the position after each move. Another example of low level optimization
centers on the use of bit-string operations, to calculate the dilation, and erosion, operators
of mathematical morphology. Other optimizations are useful at more abstract levels. The
objects related to the results of each local TS can be memorized, and the only local TS to
be computed after a move are the ones that contain objects modified by the move. At the
highest level, a program can be optimized by eliminating beforehand some computations
of the lower levels, leaving the choice of move unchanged.

As presented in Section 8, the possibility of splitting the global position into several
sub-positions enables programmers to apply the sum of game theory. Berlekamp achieved
excellent results by applying this theory to the late endgame. This result can be explained
by the specificity of the test positions in which local situations are totally independent from
one another. In real game positions, the local situations are not independent, and the sum
of game theory does not apply directly, although several attempts have been performed so
far. Explorer is undoubtedly the program which uses this theory in the best way, thanks
to thermograph calculations. Other studies on eyes [79], fights between groups [95], or
temperature calculations [71] have also been performed.

Neural network learning methods, described in Section 9, and more specifically the
temporal difference method, allow the program to automate most of the creation of an
evaluation function, and to replace the strategic level of a Go program at a low cost.
NeuroGo uses quickly defined, and quickly computed, inputs, and it successfully competes
against some programs based on more elaborate methods and concepts. An interesting
attempt would consist of using more elaborate inputs, but the learning time may then be
prohibitive. So far, programs using EF, based on the TD method, have not reached the
level of the best programs. However, they give very good results when comparing the
design complexity of classical programs to the low complexity of programs based on this
method. Other approaches, which aim to transfer the work of knowledge generation from
the programmer to the computer, are logical metaprogramming, and retrograde analysis
applied to tactical patterns. These approaches generate millions of rules that enable tactical
problems to be solved more quickly, and more accurately. In well-defined sub-problems,
like life and death of groups, Golois uses this automatically generated knowledge, and
ranks at a similar, if not better, level than the other programs.
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Very different problem solving methods may be adapted to the game of Go. In
Section 10, Monte Carlo methods surprisingly provides average level Go programs, on
9×9 boards. Based on this method, Gobble is designed in a simple way, but, like NeuroGo,
it competes effectively against far more complex programs.

Since the game of Go is visual, it is normal to explore the usual techniques of image
processing to see whether they can be useful for Computer Go. This was examined
in Section 11. Although 19 × 19 boards are much smaller than images processed in
Computer Vision, mathematical morphology enables Go programs, like Indigo or GnuGo,
to recognize territories, and influence by using dilation, erosion and closing operators.

Section 12 showed that Go is a domain, well-suited to the performance of cognitive
experiments. In order to obtain significant results, without being confused by the
complexity of the real world, cognitive science requires clearly formalized domains like
games. So as to extract intuitive, and non-conscious, knowledge from human beings, the
domain has to be sufficiently complex. The game of Go, with its intermediate complexity,
is a good domain for experiments. The Indigo program has been devised to validate the
cognitive model, based on the verbal reports of novice players. Saito and Yoshikawa [112]
have shown, on the one hand, that Go players use natural language to guide their thinking
process, and, on the other hand, that they use implicit knowledge in a way similar to the
“iceberg model”. Some experiments, already done in Chess, were repeated, for Go, by
Reitman [104]. As in Chess, they show that expert players recognize real game positions
better than do novice players, while obtaining comparable results on random positions.

13.2. Future work

Given the present state of Computer Go programming, we may wonder how Computer
Go is likely to evolve over the next few years. We have mentioned many different studies,
and we can try to figure out which paradigm will result from all these studies.

Computer Go programmers currently agree on very few concepts and tools. All the
programs have modules to compute the capture of strings. They also have modules for
connecting strings, for killing groups, and for making groups live. But, even at this
relatively low level of abstraction, the underlying concepts of the modules differ from
one program to another. For example, Many Faces of Go uses an incremental Alpha-
Beta to compute strong connections, whereas Go4++ uses a connectivity probability map.
Since a Go program is an interconnected whole, it is difficult to argue about the best way
to compute a connection. The choice of method for solving a sub-problem depends on
the global architecture of the program, and on the choices made in other modules. The
problem of comparing the pros and cons of the different architectures currently in use
remains unsolved.

The EF computation is complex, because of its many interacting concepts. An attractive
approach might be to design a multi-valued EF, each value corresponding to a concept.
A bi-valued EF has been applied to fights between groups [95], whereas a multi-valued EF
could be applied to other sub-problems of the game of Go. One problem will be to use this
multi-valued EF in a TS.

We have shown that an automatic knowledge generator has been successfully applied
to the tactical levels of a program. We can ask whether this technique will also give
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good results at more abstract levels. TD learning techniques, and simulated annealing
techniques, have been used in programs using simple data structures, to reach a global
goal. Some parts of the best programs might be improved by using such tools. First, they
could be used at low abstraction levels, for instance to estimate the connectivity. Second,
they could be used at the global levels, using more abstract information. Third, the Monte
Carlo methods could be applied to sub-problems, such as life and death.

In 1995, Handtalk—the Computer Go world champion—played moves almost instantly.
The speed might be due to assembly coding, and to limited tree search, associated with
very good heuristics for finding good moves. The goal of a program is to select a move, TS
being one way to find it. Unlike in Chess, TS in the game of Go can be partly replaced by
other tools, that select good moves in some positions. In quiet positions, where tree search
is not useful, a method based on a very abstract description of the board can give good
results.

After obtaining results relating to the late endgame, eyes, and fights, combinatorial game
theory will probably be successfully applied to other Go sub-problems. Concerning the full
game: as some local computations do not reach their end, the global level of a program
needs tools to represent uncertainty. A good program has to use an uncertainty description,
which is not to be found in Conway’s theory. In addition, the local games of an actual
game are not independent of one another. On the contrary, they are very dependent on
each other. At the moment, some programs use the simple idea of increasing the priority
of those moves which contribute to several local dependent games. But, so far, no study
has been performed on this idea, and a formalization of the different independence classes
has yet to be set up. An interesting idea would be to formalize, both the use of one goal
by another, and the interaction between several games. The problem of performing TS on
conjunctions, and disjunctions, of goals remains to be solved.

The promising results of GoTools with life and death problems, containing completely
surrounded groups, offer some attractive prospects of developing a life and death problem
solver for partially surrounded groups. This kind of problem arises in actual games, and
such a problem solver would be very useful. The number of possible moves may increase,
while the search deepens, and this constitutes the major obstacle to building this solver.
Search in life and death of completely surrounded groups is easier, because the number
of possible moves decreases as the depth increases. Another obstacle to be taken into
account is the dynamic definition of the goal to be reached (making two eyes, escaping,
and fighting).

Another possibility in the evolution of programs might be the use of parallelism. The
distributed nature of the game of Go makes this idea appealing. At present, no program
uses parallelism.

Lastly, we have to mention the likely evolution of the level of Go programs, in the years
to come. In the late 1980s, Mr. Ing decided to award prizes to any programs which could
beat a professional player, in a series of even games, before the year 2000. Today, young
professional players still give 9 handicap stones to the best programs, and players who
are used to playing against programs, are able to give as many as 29 handicap stones to
these programs. This difference in terms of number of handicap stones can be explained as
follows. During the first few games—when its human opponent confronts the strengths of
the computer—the program may give the illusion of being stronger than it actually is, and it
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plays at its “high” level. Some games later, the human opponent discovers the weaknesses
of the computer, and still later, the human opponent identifies almost all the weaknesses of
the computer, whose level generally drops to its “low” level. Nowadays, the “high” level
of the best programs may be assessed at 5th kyu—this corresponds to an average player in
a Go club. However, their “low” level ranks at 15th kyu, namely a beginner level. As long
as this gap, between the low and the high levels, is not reduced, it is risky to make any
prediction about the evolution of the level of Go programs.
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