
270 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 4, DECEMBER 2012

Evolutionary Design of FreeCell Solvers
Achiya Elyasaf, Ami Hauptman, and Moshe Sipper

Abstract—In this paper, we evolve heuristics to guide staged
deepening search for the hard game of FreeCell, obtaining
top-notch solvers for this human-challenging puzzle. We first
devise several novel heuristic measures using minimal domain
knowledge and then use them as building blocks in two evo-
lutionary setups involving a standard genetic algorithm and
policy-based, genetic programming. Our evolved solvers outper-
form the best FreeCell solver to date by three distinct measures:
1) number of search nodes is reduced by over 78%; 2) time to
solution is reduced by over 94%; and 3) average solution length is
reduced by over 30%. Our top solver is the best published FreeCell
player to date, solving 99.65% of the standard Microsoft 32 K
problem set. Moreover, it is able to convincingly beat high-ranking
human players.

Index Terms—Evolutionary algorithms, FreeCell, genetic algo-
rithms (GAs), genetic programing (GP), heuristic, hyperheuristic.

I. INTRODUCTION

D ISCRETE puzzles, also known as single-player games,
are an excellent problem domain for artificial intelligence

(AI) research, because they can be parsimoniously described,
yet are often hard to solve [1]. As such, puzzles have been the
focus of substantial research in AI during the past decades (e.g.,
[2] and [3]). Nonetheless, quite a fewNP-complete puzzles have
remained relatively neglected by academic researchers (see [4]
for a review).
Search algorithms for puzzles (as well as for other types of

problems) are strongly based on the notion of approximating
the distance of a given configuration (or state) to the problem’s
solution (or goal). Such approximations are found by means
of a computationally efficient function, known as a heuristic
function. By applying such a function to states reachable
from the current one considered, it becomes possible to select
more-promising alternatives earlier in the search process, pos-
sibly reducing the amount of search effort (typically measured
in the number of nodes expanded) required to solve a given
problem. The putative reduction is strongly tied to the quality
of the heuristic function used: employing a perfect function
means simply “strolling” onto the solution (i.e., no search de
facto), while using a bad function could render the search less
efficient than totally uninformed search, such as breadth-first
search (BFS) or depth-first search (DFS).

Manuscript received January 12, 2012; revised April 25, 2012; accepted July
17, 2012. Date of publication July 26, 2012; date of current version December
11, 2012. The work of A. Elyasaf was supported in part by the Lynn andWilliam
Frankel Center for Computer Sciences.
The authors are with the Department of Computer Science, Ben-Gu-

rion University, Beer-Sheva 84105, Israel (e-mail: achiya.e@gmail.com;
amihau@gmail.com; sipper@gmail.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCIAIG.2012.2210423

Fig. 1. A FreeCell game configuration. Cascades: Bottom eight piles. Founda-
tions: four upper-right piles. Free cells: four upper-left cells. Note that cascades
are not arranged according to suits, but foundations are. Legal moves for the
current configuration: 1) moving seven ’s from the leftmost cascade to either
the pile fourth from the left (on top of the eight ’s), or to the pile third from
the right (on top of the eight ’s); 2) moving the six ’s from the right cascade
to the left one (on top of the seven ’s); and 3) moving any single card on top
of a cascade onto the empty free cell.

A well-known, highly popular example within the domain of
discrete puzzles is the card game of FreeCell. Starting with all
cards randomly divided into piles (called cascades), the ob-
jective of the game is to move all cards onto four different piles
(called foundations), one per suit, arranged upward from the ace
to the king. Additionally, there are initially empty cells (called
free cells), whose purpose is to aid with moving the cards. Only
exposed cards can be moved, either from free cells or cascades.
Legal move destinations include: a home (foundation) cell, if all
previous (i.e., lower) cards are already there; empty free cells;
and, on top of a next highest card of opposite color in a cascade
(Fig. 1). FreeCell was proven by Helmert [5] to be NP-com-
plete. In his paper, Helmert explains that the hardness of the
domain is not (or at least not exclusively) due to the difficulty
in allocating free cells or empty pile positions, but rather due
to the choice of which card to move on top of a pile when there
are two possible choices. Computational complexity aside, even
in its limited popular version (described below) many (oft-frus-
trated) human players (including the authors) will readily attest
to the game’s hardness. The attainment of a competent machine
player would undoubtedly be considered a human-competitive
result.
FreeCell remained relatively obscure until it was included in

the Windows 95 operating system (and in all subsequent ver-
sions), along with 32 000 problems, known as Microsoft 32 K,
all solvable but one (this latter, game #11 982, was proven to
be unsolvable [6]). Due to Microsoft’s move, FreeCell has been
claimed to be one of the world’s most popular games [7]. The
Microsoft version of the game comprises a standard deck of
52 cards, eight cascades, four foundations, and four free cells.
Though limited in size, this FreeCell version still requires an
enormous amount of search, due both to long solutions and to

1943-068X/$31.00 © 2012 IEEE

ELYASAF et al.: EVOLUTIONARY DESIGN OF FreeCell SOLVERS 271

large branching factors. Thus, it remains out of reach for op-
timal heuristic search algorithms, such as A and iterative deep-
ening A [8], [9], both considered standard methods for solving
difficult single-player games (e.g., [10] and [11]). FreeCell re-
mains intractable even when powerful enhancement techniques
are employed, such as transposition tables [12], [13] and macro-
moves [14].
Despite there being numerous FreeCell solvers available

via the Internet, few have been written up in the scientific
literature. The best published solver to date is our own genetic
algorithm (GA)-based solver [15]–[17]. Using a standard GA,
we were able to outperform the previous top gun—Heineman’s
staged deepening algorithm—which is based on a hybrid
A /hill-climbing search algorithm (henceforth referred to as
the HSD algorithm). The HSD algorithm, along with a heuristic
function, forms Heineman’s FreeCell solver (we will distin-
guish between the HSD algorithm, the HSD heuristic, and the
HSD solver, which includes both). Heineman’s system exploits
several important characteristics of the game, elaborated below.
In a previous work, we successfully applied genetic pro-

gramming (GP) to evolve heuristic functions for the Rush
Hour puzzle—a hard, polynomial space (PSPACE)-complete
puzzle [18], [19]. The evolved heuristics dramatically reduced
the amount of nodes traversed by an enhanced “brute-force,”
iterative-deepening search algorithm. Although from a com-
putational complexity point of view the Rush Hour puzzle is
harder than FreeCell (unless NP PSPACE), search spaces
induced by typical instances of FreeCell tend to be substan-
tially larger than those of Rush Hour, and thus far more difficult
to solve. This is evidenced by the failure of standard search
methods to solve FreeCell, as opposed to our success in solving
all 6 6 Rush Hour problems without requiring any heuristics.
The approach we take in this paper falls within the hyper-

heuristic framework, wherein the system is provided with a
set of predefined or preexisting heuristics for solving a certain
problem, and it tries to discover the best manner in which to
apply these heuristics at different stages of the search process.
The aim is to find new, higher level heuristics, or hyperheuris-
tics [20].
Our main set of experiments focused on evolving combi-

nations of handcrafted heuristics we devised specifically for
FreeCell. We used these basic heuristics as building blocks in a
GP setting, where individuals were embodied as ordered sets of
search-guiding rules (or policies), the parts of which were GP
trees. We also used a standard GA and standard, tree-based GP
(i.e., without policies), both serving as yardsticks for assessing
the policy approach’s performance (in addition to comparisons
with the nonevolutionary methods mentioned above). We
employed three different learning methods: Rosin-style coevo-
lution [21], Hillis-style coevolution [22], and a novel method
which we call gradual difficulty (described below).
We will show that not only do we solve 99.65% of the Mi-

crosoft 32 K problem set, a result far better than the best solver
on record, but we also do so significantly more efficiently in
terms of time to solve, space (number of nodes expanded), and
solution length (number of nodes along the path to the correct
solution found). The policy-based, GP solvers described herein

thus substantively improve upon our previous GA-based solvers
[15]–[17].
The contributions of this work are as follows.
1) Using genetic programing, we develop the strongest
known heuristic-based solver for the game of FreeCell.

2) Along the way we devise several novel heuristics for Free-
Cell, many of which could be applied to other domains and
games.

3) We push the limit of what has been done with evolution fur-
ther, FreeCell being one of the most difficult single-player
domains (if not the most difficult) to which evolutionary
algorithms have been applied to date.

4) We perform a thorough analysis, applying nine different
settings for learning hyperheuristics to this difficult
problem domain.

5) By devising novel heuristics and evolving them into hyper-
heuristics, we present a new framework for solving many
heuristic problems, which proved to be efficient and suc-
cessful.

The paper is organized as follows. In the next section, we
examine previous and related work. In Section III, we describe
our method, followed by results in Section IV. Next, we discuss
our work in Section V. Finally, we end with concluding remarks
and future work in Section VI.

II. PREVIOUS WORK

We hereby review the work done on FreeCell along with sev-
eral related topics.

A. Generalized Problem Solvers

Most reported work on FreeCell has been done in the con-
text of automated planning, a field of research in which gener-
alized problem solvers (known as planning systems or planners)
are constructed and tested across various benchmark puzzle do-
mains. FreeCell was used as such a domain in several Interna-
tional Planning Competitions (IPCs) (e.g., [23]), and in many
attempts to construct state-of-the-art planners reported in the lit-
erature (e.g., [24] and [25]), though in most cases, the deck size
was fewer than 52 cards [5]. The version of the game we solve
herein, played with a full deck of 52 cards, is considered to be
one of the most difficult domains for classical planning [7], ev-
idenced by the poor performance of general purpose planners.

B. Domain-Specific Solvers

As stated above, there are numerous solvers developed
specifically for FreeCell available via the Internet, the best
of which is that of Heineman [6]. Although it fails to solve
4% of the Microsoft 32 K, Heineman’s solver significantly
outperforms all other solvers in terms of both space and time.
We elaborate on this solver in Section III-A.

C. Evolving Heuristics for Planning Systems

Many planning systems are strongly based on the notion of
heuristics (e.g., [26] and [27]). However, relatively little work
has been done on evolving heuristics for planning.

272 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 4, DECEMBER 2012

Aler et al. [28] (see also [29] and [30]) proposed a multi-
strategy approach for learning heuristics, embodied as ordered
sets of control rules (called policies), for search problems in AI
planning. Policies were evolved using a GP-based system called
EvoCK [30], whose initial population was generated by a spe-
cialized learning algorithm, called Hamlet [31]. Their hybrid
system, Hamlet-EvoCK, outperformed each of its subsystems
on two benchmark problems often used in planning: Blocks
World and Logistics (solving 85% and 87% of the problems in
these domains, respectively). Note that both these domains are
considered relatively easy (e.g., compared to FreeCell), as ev-
idenced by the fact that the last time they were included in an
IPC was in 2002.
Levine and Humphreys [32], and later Levine et al. [33],

also evolved policies and used them as heuristic measures to
guide search for the Blocks World and Logistic domains. Their
system, L2Plan, included rule-level genetic programming (for
dealing with entire rules), as well as simple local search to
augment GP crossover and mutation. They demonstrated some
measure of success in these two domains, although hand-coded
policies sometimes outperformed the evolved ones.

D. Evolving Heuristics for Specific Puzzles

Terashima-Marín et al. [34] compared two models to pro-
duce hyperheuristics that solved 2-D regular and irregular bin-
packing problems, an NP-hard problem domain. The learning
process in both of the models produced a rule-based mecha-
nism to determine which heuristic to apply at each state. Both
models outperformed the continual use of a single heuristic. We
note that their rules classified a state and then applied a (single)
heuristic, whereas we applied a combination of heuristics at
each state, which we believed would perform better.
Hauptman et al. [18], [19] evolved heuristics for the Rush

Hour puzzle, a PSPACE-complete problem domain. They
started with blind iterative deepening search (i.e., no heuristics
used) and compared it both to searching with handcrafted
heuristics, as well as to evolved ones in the form of policies.
Hauptman et al. demonstrated that evolved heuristics (with
IDA search) greatly reduce the number of nodes required to
solve instances of the Rush Hour puzzle, as compared to the
other two methods (blind search and IDA with handcrafted
heuristics).
The problem instances of [18] and [19] involved relatively

small search spaces; they managed to solve their entire initial
test suite using blind search alone (although 2% of the problems
violated their space requirement of 1.6 million nodes), and fared
even better when using IDA with handcrafted heuristics (with
no evolution required). Therefore, Hauptman et al. designed a
coevolutionary algorithm to find more challenging instances.
Note that none of the deals in the Microsoft 32 K problem

set could be solved with blind search, or with IDA equipped
with handcrafted heuristics, further evidencing that FreeCell is
far more difficult.
We applied a standard GA to evolve solvers for the game of

FreeCell, surpassing the top known solver [15], [16]. We will
show herein that, using policy-based GP, we can dramatically
improve upon this GA-FreeCell.

The recent book by Sipper [17] provides a thorough account
of the previous work on Rush Hour and FreeCell.

III. METHODS

Our work on the game of FreeCell progressed in five phases:
1) construction of an iterative deepening (uninformed) search
engine, endowed with several enhancements; heuristics
were not used during this phase;

2) guiding an IDA search algorithm with the HSD heuristic
function (HSDH);

3) implementation of the HSD algorithm (including the
heuristic function);

4) design of several novel heuristics and advisors for Free-
Cell;

5) evolving heuristics using three different evolutionary
algorithms [standard GA, standard (Koza-style) GP, and
policy-based GP], each combined with three types of
evolutionary learning mechanisms: gradual difficulty,
Rosin-style coevolution, and Hillis-style coevolution.

A. Search Algorithms

1) Iterative Deepening: We initially implemented standard
iterative deepening search [9] as the heart of our game engine.
This algorithm may be viewed as a combination of DFS and
BFS: starting from a given configuration (e.g., the initial state),
with a minimal depth bound, we perform a DFS search for
the goal state through the graph of game states (in which ver-
tices represent game configurations, and edges represent legal
moves). Thus, the algorithm requires only memory, where
is the depth of the search tree. If we succeed, the path is re-

turned. If not, we increase the depth bound by a fixed amount,
and restart the search. Note that since the search is incremental,
when we find a solution, we are guaranteed that it is optimal
since a shorter solution would have been found in a previous it-
eration (more precisely, the solution is optimal or near-optimal,
depending on whether the depth increase equals 1 or is greater
than 1). For difficult problems, such as Rush Hour and FreeCell,
finding solution is sufficient, and there is typically no require-
ment for finding the optimal solution.
An iterative-deepening-based game engine receives as input a

FreeCell initial configuration (known as a deal), as well as some
run parameters, and outputs a solution (i.e., a list of moves) or
an indication that the deal could not be solved.
We observed that even when we permitted the search algo-

rithm to use all the available memory (2 GB in our case, as
opposed to [18] where the node count was limited) virtually
all Microsoft 32 K problems could not be solved. Hence, we
deduced that heuristics were essential for solving FreeCell in-
stances—uninformed search alone was insufficient.
2) Iterative Deepening A : Given that the HSD solver out-

performs all other solvers (except ours), we implemented the
heuristic function used by HSD (described in Section III-B)
along with the iterative deepening A (IDA) search algorithm
[9], one of themost prominent methods for solving puzzles (e.g.,
[10], [11], and [35]). This algorithm operates similarly to itera-
tive deepening, except that at each iteration the minimal value
(the number of nodes encountered so far plus the heuristic value)

ELYASAF et al.: EVOLUTIONARY DESIGN OF FreeCell SOLVERS 273

TABLE I
LIST OF HEURISTICS. R: REAL OR INTEGER

of all the nodes that exceeded the current depth bound is main-
tained. This value is then used as the new depth bound.
IDA underperformed where FreeCell was concerned,

unable to solve many instances (deals). Even using several
heuristic functions, IDA , despite its success in other difficult
domains, yielded inadequate performance: less than 1% of the
deals we tackled were solved in a reasonable time.
At this point, we opted for employing the HSD solver in its

entirety, rather than merely the HSD heuristic function.
3) Staged Deepening: Heineman’s staged deepening (HSD)

algorithm is based on the observation that there is no need to
store the entire search space seen so far in memory. This is so
because of a number of significant characteristics of FreeCell.
• For most states, there is more than one distinct permutation
of moves creating valid solutions. Hence, very little back-
tracking is needed.

• There is a relatively high percentage of irreversible moves:
according to the game’s rules, a card placed in a home cell
cannot be moved again, and a card moved from an unsorted
pile cannot be returned to it.

• If we start from game state and reach state after per-
forming moves, and is large enough, then there is no
longer any need to store the intermediate states between
and . The reason is that there is a solution from (first

characteristic) and a high percentage of the moves along
the path are irreversible anyway (second characteristic).

Thus, the HSD algorithm may be viewed as two-layered
IDA with periodic memory cleanup. The two layers operate
in an interleaved fashion: 1) at each iteration, a local DFS is
performed from the head of the open list up to depth , with
no heuristic evaluations, using a transposition table—storing
visited nodes—to avoid loops; 2) only nodes at precisely depth
are stored in the open list,1 which is sorted according to the

nodes’ heuristic values. In addition to these two interleaved
layers, whenever the transposition table reaches a predeter-
mined size, it is emptied entirely, and only the open list remains
in memory. Algorithm 1 presents the pseudocode of the HSD
algorithm. was empirically set by Heineman to 200 000.

Algorithm 1: Heineman’s Staged Deepening Algorithm

// Parameter: , size of transposition table
1: initial state
2: while not empty do
3: remove best state in according to heuristic value

1Note that since we are using DFS and not BFS we do not find all such states.

4: all states exactly moves away from , discovered
by DFS

5: merge
// merge maintains sorted by descending heuristic value
// merge overwrites nodes in with newer nodes from
of equal heuristic value

6: if size of transposition table then
7: clear transposition table
8: end if
9: if goal then
10: return path to goal
11: end if
12: end while

Compared with IDA , HSD uses fewer heuristic evaluations
(which are performed only on nodes entering the open list), re-
sulting in a significant reduction in time. Reduction is achieved
through the second layer of the search, which stores enough in-
formation to perform backtracking (as stated above, this does
not occur often), and the size of is controlled by overwriting
nodes.
Although the staged deepening algorithm does not guarantee

an optimal solution, as explained above, for difficult problems,
finding solution is sufficient.
When we ran the HSD solver, it solved 96% of Microsoft 32

K, as reported by Heineman.
At this point, we were at the limit of the current state of the art

for FreeCell, and we turned to evolution to attain better results.
However, we first needed to develop additional heuristics for
this domain.

B. FreeCell Heuristics and Advisors

In this section, we describe the heuristics we used, all of
which estimate the distance to the goal from a given game con-
figuration.
• Heineman’s staged deepening heuristic
(HSDH): This is the heuristic used by the HSD solver.
For each foundation pile (recall that foundation piles are
constructed in ascending order), locate within the cascade
piles the next card that should be placed there, and count
the cards found on top of it. The returned value is the sum
of this count for all foundations. This number is multiplied
by two if there are no available free cells or empty cascade
piles (reflecting the fact that freeing the next card is harder
in this case).

274 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 4, DECEMBER 2012

• NumWellPlaced: Count the number of well-placed
cards in cascade piles. A pile of cards is well placed if all
its cards are in descending order and alternating colors.

• NumCardsNotAtFoundations: Count the number
of cards that are not at the foundation piles.

• FreeCells: Count the number of available free cells
and cascades.

• DifferenceFromTop: The average value of the top
cards in cascades, minus the average value of the top cards
in foundation piles.

• LowestFoundationCard: The highest possible card
value (typically the king) minus the lowest card value in
foundation piles.

• HighestFoundationCard: The highest card value in
foundation piles.

• DifferenceFoundation: The highest card value in
the foundation piles minus the lowest one.

• SumOfBottomCards: Take the highest possible sum of
cards in the bottom of cascades (e.g., for eight cascades,
this is), and subtract the sum
of values of cards actually located there. For example, in
Fig. 1, SumOfBottomCards is

.
Table I provides a summary of all heuristics.
Apart from heuristics, which estimate the distance to the goal,

we also defined advisors (or auxiliary functions), incorporating
domain features, i.e., functions that do not provide an estimate
of the distance to the goal but which are nonetheless beneficial
in a GP setting.
• PhaseByX: This is a set of functions that includes a
“mirror” function for each of the heuristics in Table I. Each
function’s name (and purpose) is derived by replacing X
in PhaseByX with the original heuristic’s name, e.g.,
LowestFoundationCard produces PhaseByLow-
estFoundationCard. PhaseByX incorporates the
notion of applying different strategies (embodied as
heuristics) at different phases of the game, with a phase
defined by , where is the number of moves
made so far, and is the value of the original heuristic.
For example, suppose ten moves have been made
, and the value returned by LowestFoundation-

Card is 5. The PhaseByLowestFoundationCard
heuristic will return or in this case, a value
that represents the belief that by using this heuristic the
configuration being examined is at approximately of
the way from the initial state to the goal.

• DifficultyLevel: This function returns the location
of the current problem (initial state) being solved in an
ordered problem set (sorted by difficulty), and thus yields
an estimate of how difficult it is. The difficulty of a problem
is defined by the number of nodes the HSD solver needed
to solve it.

• IsMoveToCascade is a Boolean function that examines
the destination of the last move and returns true if it was a
cascade.

Table II provides a list of the auxiliary functions, including
the above functions and a number of additional ones.

All of the heuristics and advisors described above are intu-
itive and straightforward to implement and compute, with their
time complexity bounded by the number of cards, i.e., problem
input. Furthermore, they are not resource avaricious as are stan-
dard heuristic functions, such as relaxation (time consuming)
and PDBs (memory consuming).
Experiments with these heuristics demonstrated that each one

separately (except for HSDH) was not good enough to guide
search for this difficult problem. Thus, we turned to evolution.

C. Evolving Heuristics for FreeCell

Combining several heuristics to get a more accurate one is
considered one of the most difficult problems in contemporary
heuristics research [35], [36].
This task typically involves solving three major subproblems:
1) how to combine heuristics by arithmetic means, e.g., by
summing their values or taking the maximal value;

2) finding exact conditions (i.e., logic functions) re-
garding when to apply each heuristic, or combinations
thereof—some heuristics may be more suitable than others
when dealing with specific game configurations;

3) finding the proper set of game configurations in order to
facilitate the learning process while avoiding pitfalls such
as overfitting.

The problem of combining heuristics is difficult mainly be-
cause it entails traversing an extremely large search space of
possible numeric combinations, logic conditions, and game con-
figurations. To tackle this problem, we turn to evolution.
In order to properly solve these three subproblems, we de-

signed a large set of experiments using three different evolu-
tionary methods, all involving hyperheuristics: standard GA,
standard (Koza-style) GP, and policy-based GP. Each type of
hyperheuristic was paired with three different learning settings:
Rosin-style coevolution, Hillis-style coevolution, and a novel
method which we call gradual difficulty.
Below we describe the elements of our setup in detail.
1) The Hyperheuristic-Based Genome: We used three dif-

ferent genomic representations.
• Standard GA. This representation was used by us in
[15]–[17]. This type of hyperheuristic only addresses the
first problem of how to combine heuristics by arithmetic
means. Each individual comprises nine real values in
the range , representing a linear combination of all
nine heuristics described above (Table I). Specifically, the
heuristic value , designated by an evolving individual,
is defined as , where is the th weight
specified by the genome, and is the th heuristic shown
in Table I. To obtain a more uniform calculation, we
normalized all heuristic values to within the range by
maintaining a maximal possible value for each heuristic,
and dividing by it. For example, DifferenceFoun-
dation returns values in the range (13 being the
difference between the king’s value and the ace’s value),
and the normalized values are attained by dividing by 13.
A GA seemed a natural algorithm to employ given the wish
to obtain a linear vector of weights. As the results will
show, the GA proved quite successful and was therefore

ELYASAF et al.: EVOLUTIONARY DESIGN OF FreeCell SOLVERS 275

TABLE II
LIST OF AUXILIARY FUNCTIONS. B: BOOLEAN; R: REAL OR INTEGER

retained as a yardstick to measure against when we em-
barked upon our GP path.

• GP. As we wanted to embody both combinations of esti-
mates and application conditions we evolved GP trees, as
described in [37]. The function set included the functions
{IF, AND, OR, , , , }, and the terminal set included all
heuristics and auxiliary functions in Tables I and II, as well
as random numbers within the range . All the heuristic
values were normalized to within the range as per-
formed above with the GA.
This method yielded poor results, no matter what depth
limit was used for the trees.

• Policies. The last genome used also combines estimates
and application conditions, using ordered sets of con-
trol rules, or policies. As stated above, policies have
been evolved successfully with GP to solve search prob-
lems—albeit simpler ones (e.g., [18], [19], and [28],
mentioned above).

The structure of our policies is the same as the one in [18]

RULE IF THEN

RULE IF THEN

DEFAULT

where Condition and Value represent conditions and esti-
mates, respectively.
Policies are used by the search algorithm in the following

manner. The rules are ordered such that we apply the first rule
that “fires” (meaning its condition is true for the current state
being evaluated), returning its Value part. If no rule fires, the
value is taken from the last (default) rule: Value . Thus, in-
dividuals, while in the form of policies, are still heuristics—the
value returned by the activated rule is an arithmetic combination
of heuristic values, and is thus a heuristic value itself. This ac-
cords with our requirements: rule ordering and conditions con-
trol when we apply a heuristic combination, and values provide
the combinations themselves.
Thus, with being the number of rules used, each individual

in the evolving population contains Condition GP trees and
Value sets of weights used for computing linear combina-

tions of heuristic values. After experimenting with several sizes
of policies, we settled on , providing us with enough rules
per individual, while avoiding cumbersome individuals with too

many rules. The depth limit used for theCondition trees was em-
pirically set to 5.
For Condition GP trees, the function set included the func-

tions {AND, OR, , }, and the terminal set included all heuris-
tics and auxiliary functions in Tables I and II. The sets of weights
appearing in Value all lie within the range , and correspond
to the heuristics listed in Table I. All the heuristic values are
normalized to within the range as described above.
2) Genetic Operators: We applied GP-style evolution in the

sense that first an operator (reproduction, crossover, or muta-
tion) was selected with a given probability, and then one or
two individuals were selected in accordance with the operator
chosen. For all types of genomes we used standard fitness-pro-
portionate selection. We also used elitism; the best individual of
each generation was passed onto the next one unchanged.
For simple GA individuals, standard reproduction and single-

point crossover were applied [38]. Mutation was performed in
a manner analogous to bitwise mutation by replacing with inde-
pendent probability a (real-valued) weight by a new random
value in the range .
We used Koza’s standard crossover, mutation, and reproduc-

tion operators, for the GP hyperheuristics [37].
For policies, however, the crossover and mutation operators

were performed as follows. First, one or two individuals were
selected (depending on the genetic operator). Second, we ran-
domly selected the rule (or rules) within the individual(s). This
we did with uniform distribution, except that the most oft-used
rule (we measured the number of times each rule fired) had a
50% chance of being selected. Third, we chose with uniform
probability whether to apply the operator to either of the fol-
lowing: the entire rule, the condition part, or the value part.
We thus had six suboperators, three for crossover (Rule-

Crossover, ConditionCrossover, and ValueCrossover) and
three for mutation (RuleMutation, ConditionMutation, and
ValueMutation). One of the major advantages of policies is that
they facilitate the use of such diverse genetic operators.
For both GP trees and policies, crossover was only performed

between nodes of the same type (using strongly typed genetic
programming [39]).
3) GP Parameters: We experimented with several configu-

rations, finally settling upon: population size—between 40 and
60; total generation count—between 300 and 1000, depending
on the learning method, as elaborated below; reproduction
probability—0.2; crossover probability—0.7; mutation proba-
bility—0.1; and elitism set size—1. These settings were applied
to all types of hyperheuristics. A uniform distribution was used

276 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 4, DECEMBER 2012

for selecting crossover and mutation points within individuals,
except for policies, as described above.
4) Training and Test Sets: The Microsoft 32 K suite contains

a random assortment of deals of varying difficulty levels. In each
of our experiments, 1000 of these deals were randomly selected
for the training set and the remaining 31 000 were used as the
test set.
The training set for the gradual-difficulty approach was se-

lected anew each run, as described in Section III-D1.
5) Fitness: An individual’s fitness score was obtained by

running the HSD solver on deals taken from the training set,
with the individual used as the heuristic function. Fitness
equaled the average search-node reduction ratio. This ratio
was obtained by comparing the reduction in number of search
nodes, averaged over solved deals, with the average number
of nodes when searching with the original HSD heuristic
(HSDH). For example, if the average reduction in search was
70% compared with HSDH (i.e., 70% fewer nodes expanded
on average), the fitness score was set to 0.7. If a given deal was
not solved within 2 min (a time limit we set empirically), we
assigned a fitness score of 0 to that deal.
To distinguish between individuals that did not solve a given

deal and individuals that solved it but without reducing the
amount of search (the latter case reflecting better performance
than the former), we assigned to the latter a partial score of
(FractionExcessNodes) , where FractionExcessNodes
was the fraction of excessive nodes (values greater than 1 were
truncated to 1), and was a constant used to decrease the
score relative to search reduction (set empirically to 1000).
For example, an excess of 30% would yield a partial score of

; an excess of over 200% would yield 0.
Becauseof thepuzzle’sdifficulty,somedealsweresolvedbyan

evolving individual or by HSDH, but not by both, thus rendering
comparison (andfitness computation) problematic. To overcome
this, we imposed a penalty for unsuccessful search: problems not
solved within 2min were counted as requiring 10 search nodes.
For example, if HSDH did not solve within 2 min a deal that an
evolving individual did solve using 5 10 nodes, the percent of
nodes reducedwas computed as 50%.The 10 valuewas derived
by taking the hardest problem solved by HSDH and multiplying
by two the number of nodes required to solve it.
An evolving solver’s fitness per single deal thus equaled

search–node reduction ratio
if solution found with node reduction

if solution found without node reduction

if no solution found

and the total fitness was defined as the average
. Initially, we computed fitness by using a con-

stant number of deals (set to 10 to allow diversity while
avoiding prolonged evaluations), which were chosen randomly
from the training set. However, as the test set was large, fitness
scores fluctuated wildly and improvement proved difficult. To
overcome this problem, we devised a novel learning method
which we called gradual difficulty.

D. Learning Methods

1) Gradual Difficulty: First, we sort the entire Microsoft 32
K into groups of increasing difficulty levels. During the course
of learning, the difficulty of the problems encountered by indi-
viduals is increased by selecting from the more difficult groups.
Sorting is done according to the number of nodes required to

solve each deal with HSDH. We divided the problems into 45
groups consisting of 100 problems each. An evolutionary run
begins by choosing one random problem from each of the five
easiest groups (group01, , group05). Then, we use only these
five problems for fitness evaluation. The run continues for ten
generations or until an individual with a fitness score of 0.7 or
above is found. Next, we drop the problem from group01 and re-
place it with a random problem from group06, i.e., we nowwork
with problems from group02, , group06. This is repeated:
drop easiest group, add more difficult one, until group45 is used
for evaluation, i.e., until we are dealing with groups group41,
, group45. To reduce the effect of overfitting when evaluating

with specific groups of problems, we also used a sixth problem
for fitness evaluation. This problem was selected from one of
the groups that had been dropped, with the number of dropped
groups continually growing. The test set used was the remainder
of Microsoft 32 K.
Note that all the parameters described in this section—total

number of groups, number of concurrently used groups, gener-
ation count per group, and maximal fitness—were determined
empirically.
While some improvement was observed in node reduction

and time, the individuals developed with this method failed to
solve many of the problems solved by HSDH. This is further
discussed in Section IV. Also, the learning process needed over
1000 generations to attain reasonable results.
The major reason for failing to solve many problems when

using hyperheuristics evolved with gradual difficulty learning is
the phenomenon of forgetting [40]–[42]: over the generations,
the population becomes adept at solving certain problems, at
the expense of “forgetting” to solve other problems it had been
adept at in earlier generations.
Coevolution, wherein the population of solutions coevolves

alongside a population of problems, offers a solution to this
problem. The basic idea is that neither population is allowed to
stagnate: as solvers become more adept at solving certain prob-
lems these latter do not remain in the problem set but are re-
moved from the population of problems, which itself evolves.
In this form of competitive coevolution, the fitness of one pop-
ulation is inversely related to the fitness of the other population.
2) Rosin-Style Coevolution: The first type of coevolution we

tried was Rosin-style coevolution with a Hall of Fame [21].
Rosin’s method may be viewed as an extension of the elitism
concept. The Hall of Fame encourages arms races by saving
good individuals from prior generations [21].
In this coevolutionary scenario, the first population comprises

hyperheuristics, as described above, while the second popula-
tion consists of FreeCell deals. The populations are equal in
size (40). Ten top deals (in terms of difficulty to solve them)
are maintained in the Hall of Fame for future testing. Each hy-
perheuristic individual is given five deals to solve from the deals

ELYASAF et al.: EVOLUTIONARY DESIGN OF FreeCell SOLVERS 277

population and two instances from theHall of Fame. Thus, each
deal is provided as training material to more than one hyper-
heuristic.
The genome and genetic operators of the solver population

were identical to those defined in Section III-C.
We applied GP-style evolution to the deal population in the

sense that first an operator (reproduction or mutation) was se-
lected with a given probability, and then one or two individuals
were selected in accordance with the operator chosen. We used
standard fitness-proportionate selection. Mutation was applied
by replacing a random deal with another random deal from the
training set. We did not use crossover.
Fitness was assigned to a solver by averaging its performance

over the seven deals, as described in Section III-C.
A deal individual’s fitness was defined as the average number

of nodes needed to solve it, averaged over the solvers that “ran”
this individual, and divided by the average number of nodes
when searching with the original HSD heuristic. If a particular
deal was not solved by any of the solvers, a value of 10 nodes
was assigned to it. This way the fitness of deals was inversely
proportional to the hyperheuristics’ fitness, so that if a deal was
solved easily (with a relatively small number of nodes) on av-
erage, it was assigned a low fitness.
Unfortunately, this method proved unsuccessful for our

problem domain, regardless of the parameter settings.
Rosin-style coevolution is based on the assumption that
the more the FreeCell deals that accumulate in the Hall of
Fame are harder, the more the hyperheuristics will improve.
Although this assumption might hold for some domains, it is
untrue for FreeCell due to the difficulty of defining hard prob-
lems. While for some states a heuristic function might provide
a good estimate, for other states, it might provide bad estimates
[43]. This means that there is no inherently hard or easy state
for a heuristic; therefore, a hard-to-solve Hall of Fame deal in
a certain generation will be easy to solve a few generations
later when the hyperheuristic individuals have specialized in
the new type of deals and have “forgotten” how to solve the
previous ones. If at some point a hyperheuristic performs badly
on some deals in the Hall of Fame, we do not know whether the
hyperheuristic is bad all around or perhaps it performs well on
other types of deals. The evolutionary process exploits this for
the benefit of the deal population, and every few generations
“hard” deals become “easy” and vice versa.
Given the fundamental problem of forgetting, a new method

for training the hyperheuristics to classify states and apply dif-
ferent values thereof was needed. Although policies were de-
signed to maintain rules for different states, they need an effec-
tive training method to learn the correct questions and values.
Thus, we come to Hillis-style coevolution, which proved to

be the most successful learning method for FreeCell.
3) Hillis-Style Coevolution: We assumed that if we could

train each hyperheuristic with a subset of deals that somehow
represented the entire search space, we would obtain better re-
sults. Although Hillis-style coevolution [22] did not originally
address this problem, it does provide a solution.
In our new coevolutionary scenario, the first population com-

prises the solvers, as described above. In the second popula-
tion, an individual represents a set of FreeCell deals. Thus, a

Fig. 2. Crossover and mutation of individuals in the population of problems
(deals).

“hard”-to-solve individual in this latter problem population con-
tains several deals of varying difficulty levels. This multideal
individual made life harder for the evolving solvers: they had
to maintain a consistent level of play over several deals. With
single-deal individuals, which we used in Rosin-style coevolu-
tion, either the solvers did not improve if the deal population
evolved every generation (i.e., too fast), or the solvers became
adept at solving certain deals and failed on others if the deal
population evolved more slowly (i.e., every generations, for a
given).
The genome and genetic operators of the solver population

were identical to those defined in Section II-C.
The genome of an individual in the deals population con-

tained six FreeCell deals, represented as integer-valued indexes
from the training set , where is a random
index in the range . We applied GP-style evolution
in the sense that first an operator (reproduction, crossover,
or mutation) was selected with a given probability, and then
one or two individuals were selected in accordance with the
operator chosen. We used standard fitness-proportionate se-
lection and single-point crossover. Mutation was performed
in a manner analogous to bitwise mutation by replacing with
independent probability an (integer-valued) index with
a randomly chosen deal (index) from the training set, i.e.,

(Fig. 2). Since the solvers needed more
time to adapt to deals, we evolved the deal population every
five solver generations (this slower evolutionary rate was set
empirically).
We experimented with several parameter settings, finally

settling on: population size—between 40 and 60; generation
count—between 60 and 80; reproduction probability—0.2;
crossover probability—0.7; mutation probability—0.1; and
elitism set size—1.

278 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 4, DECEMBER 2012

TABLE III
AVERAGE NUMBER OF NODES, TIME (IN SECONDS), AND SOLUTION LENGTH
REQUIRED TO SOLVE ALL MICROSOFT 32 K PROBLEMS, ALONG WITH THE
NUMBER OF PROBLEMS SOLVED. TWO SETS OF MEASURES ARE GIVEN: 1)
UNSOLVED PROBLEMS ARE ASSIGNED A PENALTY; AND 2) UNSOLVED
PROBLEMS ARE EXCLUDED FROM THE COUNT. HSDH IS THE
HEURISTIC FUNCTION USED BY HSD, GA-FreeCell IS OUR
TOP EVOLVED GA SOLVER [15], AND POLICY-FreeCell IS

THE TOP EVOLVED HYPERHEURISTIC POLICY, ALL
SELECTED ACCORDING TO PERFORMANCE

ON THE TRAINING SET

Fitness was assigned to a solver by picking two individuals
in the deal population and attempting to solve all 12 deals they
represented. The fitness value was an average of all 12 deals, as
described in Section III-C.
Whenever a solver “ran” a deal individual’s six deals, its

performance was recorded in order to derive the fitness of the
deal population. A deal individual’s fitness was defined as the
average number of nodes needed to solve the six deals, aver-
aged over the solvers that “ran” this individual, and divided by
the average number of nodes when searching with the original
HSD heuristic. If a particular deal was not solved by any of the
solvers—a value of 10 nodes was assigned to it.
Not only did this method surpass the previous ones, but it

also outperformed HSDH by a wide margin, solving all but 112
deals of Microsoft 32 K when using policy individuals, and did
so using significantly less time and space requirements. Addi-
tionally, the solutions found were shorter and hence better.

IV. RESULTS

We evaluated the performance of evolved heuristics with
the same scoring method used for fitness computation, except
we averaged over all Microsoft 32 K deals instead of over the
training set. We also measured average improvement in time,
solution length (number of nodes along the path to the correct
solution found), and number of solved instances of Microsoft
32 K, all compared to the HSD heuristic, HSDH.
We compared the following heuristics: HSDH (Section III-B),

HighestFoundationCard, and DifferenceFounda-
tion (Section III-B), all of which proliferated in evolved in-
dividuals, and the top hyperheuristic developed via each of the
learning methods.
Table III shows our results. HighestFoundationCard,

DifferenceFoundation, and all GP individuals proved
worse than HSD’s heuristic function in all of the measures and
in all of the experiments and therefore were not included in
the tables. In addition, all Rosin-style coevolution experiments
failed to solve more than 98% of the problems, and therefore
this learning method was not included in the tables either.

The results for the test set (Microsoft 32 Kminus 1 K training
set) and for the entire Microsoft 32 K set were very similar, and
therefore we report only the latter. The runs proved quite similar
in their results, with the number of generations being 1000 on
average for gradual difficulty and 300 on average for Hillis-style
coevolution. The first few generations took more than 8 h (on
a Linux-based PC, with processor speed 3 GHz, and 2 GB of
main memory) since most of the solvers did not solve most of
the deals within the 2-min time limit. As evolution progressed,
a generation came to take less than 1 h.
For comparing unsolved deals, we applied the 10 penalty

scheme, described in Section III-C, to the node reduction
measure. Since we also compared time to solve and solution
length, we applied the penalties of 9000 s and 60 000 moves
to these measures, respectively. Since we used this penalty
scheme during fitness evaluation, we included the penalty in
the results as well.
Compared to HSDH, GA-FreeCell [15] and Policy-FreeCell

reduced the amount of search by more than 78%, solution
time by more than 93%, and solution length by more than
30% (with unsolved problems excluded from the count). In
addition, Policy-FreeCell solved 99.65% of Microsoft 32 K,
thus outperforming both HSDH and GA-FreeCell. Note that
although Policy-FreeCell solves “only” 1.3% more instances
than GA-FreeCell, these additional deals are far harder to solve
due to the long tail of the learning curve.
One of our best policy solvers is shown in Table IV.
How does our evolution-produced player fare against hu-

mans? A major FreeCell website2 provides a ranking of human
FreeCell players, listing solution times and win rates (alas, no
data on number of deals examined by humans, or on solution
lengths). This site contains thousands of entries and has been
active since 1996, so the data are reliable. It should be noted
that the game engine used by this site generates random deals
in a somewhat different manner than the one used to generate
Microsoft 32 K. Yet, since the deals are randomly generated,
it is reasonable to assume that the deals are not biased in any
way. Since statistics regarding players who played sparsely are
not reliable, we focused on humans who played over 30 000
games—a figure commensurate with our own.
The site statistics, which we downloaded on December 13,

2011, included results for 83 humans who met the minimal-
game requirement—all but two of whom exhibited a win rate
greater than 91%. Sorted according to the number of games
played, the number 1 player played 160 237 games, achieving
a win rate of 96.02%. This human is therefore pushed to the
fourth position, with our top player (99.65% win rate) taking
the first place, our GA-FreeCell taking the second place, and
HSDH coming in third (Table V).
When sorted according to average solving time, the fastest

human player with a win rate above 90% solved deals in an
average time of 104 s and achieved a win rate of 96.56%.
This human is therefore pushed to the fourth position, with
HSDH in the third place, GA-FreeCell in the second place, and
Policy-FreeCell taking the first place (Table VI). Note that the
fastest human player—caralina—takes 67 s on average to reach

2http://www.freecell.net

ELYASAF et al.: EVOLUTIONARY DESIGN OF FreeCell SOLVERS 279

TABLE IV
EXAMPLE OF AN EVOLVED POLICY-BASED SOLVER. IS THE th HEURISTIC OF TABLE I

TABLE V
THE TOP THREE HUMAN PLAYERS (WHEN SORTED ACCORDING TO NUMBER
OF GAMES PLAYED), COMPARED WITH HSDH, GA-FreeCell, AND POLICY-
FreeCell. SHOWN ARE NUMBER OF DEALS PLAYED, AVERAGE TIME (IN

SECONDS) TO SOLVE, AND PERCENT OF SOLVED DEALS FROM
MICROSOFT 32 K. TABLE ARRANGED IN DESCENDING ORDER

OF WIN RATE (PERCENTAGE OF SOLVED DEALS)

TABLE VI
THE TOP THREE HUMAN PLAYERS WITHWIN RATE OVER 90% (WHEN SORTED
ACCORDING TO AVERAGE TIME TO SOLVE), COMPARED WITH HSDH, GA-
FreeCell, AND POLICY-FreeCell. SHOWN ARE NUMBER OF DEALS PLAYED,
AVERAGE TIME (IN SECONDS) TO SOLVE, AND PERCENT OF SOLVED DEALS
FROM MICROSOFT 32 K. TABLE ARRANGED IN DESCENDING ORDER

OF WIN RATE (PERCENTAGE OF SOLVED DEALS)

a solution (Table V). HSDH reduces caralina’s average time by
34.3%, while our evolved solvers reduce the average time by
95.5%. These values suggest that outperforming human players
in time to solve is not a trivial task for a computer. Yet, our
evolved solvers manage to shine with respect to time as well.
If the statistics are sorted according to win rate, then our

Policy-FreeCell player takes the first place with a win rate of

TABLE VII
THE TOP THREE HUMAN PLAYERS (WHEN SORTED ACCORDING TO WIN RATE),
COMPARED WITH HSDH, GA-FreeCell, AND POLICY-FreeCell. SHOWN ARE
NUMBER OF DEALS PLAYED, AVERAGE TIME (IN SECONDS) TO SOLVE, AND
PERCENT OF SOLVED DEALS FROM MICROSOFT 32 K. TABLE ARRANGED
IN DESCENDING ORDER OF WIN RATE (PERCENTAGE OF SOLVED DEALS)

99.65%, while GA-FreeCell attains the respectable 11th place.
Either way, it is clear that when compared with strong, per-
sistent, and consistent humans, Policy-FreeCell emerges as the
new best player to date, leaving HSDH far behind (Table VII).

V. DISCUSSION

Although policies can be seen as a special case of GP trees,
they yielded good results for this domain while GP did not. A
possible reason for this is that the policy structure is more apt for
this type of problem. The policy conditions classify states while
the values combine the available heuristics. When a standard
GP tree is used, the structure is not clear and many meaningless
trees are generated.
Another interesting point is the difference in the results be-

tween GA-FreeCell and Policy-FreeCell. Eighty percent of the
problems not solved by GA-FreeCell were solved by Policy-
FreeCell, leaving only 112 unsolved problems by the latter.
On the other hand, the search reduction measures were similar.

280 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 4, DECEMBER 2012

Thus, we concluded that for most of the states a simple GA in-
dividual would have sufficed, but in order to attain a leap in
success rate the use of policies proved necessary.
In general, when the evaluation time of an individual is short,

large populations may be used; moreover, we can afford to eval-
uate each individual on many randomly selected instances, per-
haps even on the entire training set, thereby attaining a reliable
fitness measure. In such cases, gradual difficulty might con-
tribute to the evolutionary process. However, with long evalua-
tion times, an individual can be tested against but a small subset
of the entire training set, and this part will not be representative
of the whole. The learning process will then exhibit “forgetful-
ness” and “specialization,” as described in Section III-D. As we
saw, Hillis-style coevolution solved these problems since we did
not need to know a priori, which deals to use for the learning
process.
Last, the heuristics and advisors used as building blocks

for the evolutionary process are intuitive and straightforward
to implement and compute. Yet, our evolved solvers are the
top solvers for the game of FreeCell, suggesting that in some
domains good solvers can be achieved with minimal domain
knowledge and without the use of much domain expertise.
It should be noted that complex heuristics and memory-con-
suming heuristics (e.g., landmarks and pattern databases) can
be easily used as building blocks as well. Such solvers might
outperform the simpler ones at the expense of increased run
time or code complexity.

VI. CONCLUDING REMARKS

We evolved a solver for the FreeCell puzzle, one of the
most difficult single-player domains (if not the most difficult)
to which evolutionary algorithms have been applied to date.
Policy-FreeCell and GA-FreeCell beat the previous top pub-
lished solver by a wide margin on several measures, with the
former emerging as the top gun. By classifying states and
assigning different values to different states, Policy-FreeCell
was able to solve 99.65% of Microsoft 32 K, a result far better
than any previous solver.
There are a number of possible extensions to our work, in-

cluding the following.:
1) It is possible to implement FreeCell macromoves and thus
decrease the search space. Implementing macromoves will
yield better results, and we believe that we might even
solve the entire Microsoft 32 K (not including unsolvable
game #11 982).

2) As mentioned in Section V, complex heuristics and
memory-consuming heuristics (e.g., landmarks and pat-
tern databases) can easily be used as building blocks as
well. Such solvers might outperform the simpler ones at
the expense of increased run time or code complexity.

3) The HSD algorithm, enhanced with evolved heuristics, is
more efficient than the original version. This is evidenced
both by the amount of search reduction and the increased
number of solved deals. It remains to be determined
whether the algorithm, when aided by evolution, can
outperform other widely used algorithms (such as IDA)
in different domains. The fact that the algorithm is based
on several properties of search problems, such as the high

percentage of irreversible moves and the small number of
deadlocks, already points the way toward several domains.
A good candidate may be the Satellite game, previously
studied in [44] and [45].

4) Handcrafted heuristics may themselves be improved by
evolution. This could be done by breaking them into their
elemental components and evolving their combinations
thereof.

5) Many single-agent search problems fall within the frame-
work of AI-planning problems (e.g., with ADL [46]).
However, using evolution in conjunction with these tech-
niques is not trivial and may require the use of techniques
such as GP policies [18].

REFERENCES

[1] J. Pearl, Heuristics. Reading, MA: Addison-Wesley, 1984.
[2] E. Robertson and I. Munro, “NP-completeness, puzzles and games,”

Utilas Mathematica, vol. 13, pp. 99–116, 1978.
[3] R. A. Hearn, “Games, puzzles, and computation,” Ph.D. dissertation,

Dept. Electr. Eng. Comput. Sci., Massachusetts Inst. Technol., Cam-
bridge, MA, 2006.

[4] G. Kendall, A. Parkes, and K. Spoerer, “A survey of NP-complete puz-
zles,” Int. Comput. Games Assoc. J., vol. 31, pp. 13–34, 2008.

[5] M. Helmert, “Complexity results for standard benchmark domains in
planning,” Artif. Intell., vol. 143, no. 2, pp. 219–262, 2003.

[6] G. T. Heineman, “Algorithm to solve FreeCell solitaire games,”
O’Reilly Media, January 2009 [Online]. Available: http://broadcast.or-
eilly.com/2009/01/january-column-graph-algorithm.html

[7] F. Bacchus, “AIPS’00 planning competition,” AI Mag., vol. 22, no. 1,
pp. 47–56, 2001.

[8] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for heuristic
determination of minimum path cost,” IEEE Trans. Syst. Sci. Cybern.,
vol. 4, no. 2, pp. 100–107, Feb. 1968.

[9] R. E. Korf, “Depth-first iterative-deepening: An optimal admissible
tree search,” Artif. Intell., vol. 27, no. 1, pp. 97–109, 1985.

[10] A. Junghanns and J. Schaeffer, “Sokoban: A challenging single-agent
search problem,” in Proc. Workshop Using Games as an Experimental
Testbed for AI Res., 1997, pp. 27–36.

[11] R. E. Korf, “Finding optimal solutions to Rubik’s cube using pattern
databases,” in Proc. 14th Nat. Conf. Artif. Intell./9th Conf. Innovative
Appl. Artif. Intell., 1997, pp. 700–705.

[12] P.W. Frey, Chess Skill inMan andMachine. Secaucus, NJ: Springer-
Verlag, 1979.

[13] L. A. Taylor and R. E. Korf, “Pruning duplicate nodes in depth-first
search,” in Proc. 11th Nat. Conf. Artif. Intell., 1993, pp. 756–761.

[14] R. E. Korf, “Macro-operators: A weak method for learning,” Artif. In-
tell., vol. 26, pp. 35–77, 1985.

[15] A. Elyasaf, A. Hauptman, and M. Sipper, “GA-FreeCell: Evolving
solvers for the game of FreeCell,” in Proc. 13th Annu. Conf. Genetic
Evol. Comput., N. Krasnogor, Ed. et al., Dublin, Ireland, Jul. 12–16,
2011, pp. 1931–1938.

[16] A. Elyasaf, Y. Zaritsky, A. Hauptman, and M. Sipper, “Evolving
solvers for FreeCell and the sliding-tile puzzle,” in Proc. 4th Annu.
Symp. Combinatorial Search, D. Borrajo, M. Likhachev, and C. L.
Löpez, Eds., 2011, pp. 189–190.

[17] M. Sipper, Evolved to Win. Raleigh, NC: Lulu Press, 2011 [Online].
Available: http://www.lulu.com/us/en/shop/moshe-sipper/evolved-to-
win/ebook/product-18719826.html

[18] A. Hauptman, A. Elyasaf, M. Sipper, and A. Karmon, “GP-Rush:
Using genetic programming to evolve solvers for the Rush Hour
puzzle,” in Proc. 11th Annu. Conf. Genetic Evol. Comput. Conf., 2009,
pp. 955–962.

[19] A. Hauptman, A. Elyasaf, and M. Sipper, “Evolving hyper heuristic-
based solvers for Rush Hour and FreeCell,” in Proc. 3rd Annu. Symp.
Combinatorial Search, 2010, pp. 149–150.

[20] M. Bader-El-Den, R. Poli, and S. Fatima, “Evolving timetabling heuris-
tics using a grammar-based genetic programming hyper-heuristic
framework,”Memetic Comput., vol. 1, no. 3, pp. 205–219, Nov. 2009.

[21] C. D. Rosin, “Coevolutionary search among adversaries,” Ph.D. dis-
sertation, Dept. Comput. Sci. Eng., Univ. California, San Diego, CA,
1997.

ELYASAF et al.: EVOLUTIONARY DESIGN OF FreeCell SOLVERS 281

[22] D. W. Hillis, “Co-evolving parasites improve simulated evolution in
an optimization procedure,” Physica D, vol. 42, pp. 228–234, 1990.

[23] D. Long and M. Fox, “The 3rd international planning competition: Re-
sults and analysis,” J. Artif. Intell. Res., vol. 20, pp. 1–59, 2003.

[24] A. Coles and K. A. Smith, “Marvin: A heuristic search planner with on-
line macro-action learning,” J. Artif. Intell. Res., vol. 28, pp. 119–156,
2007.

[25] S. Yoon, A. Fern, and R. Givan, “Learning control knowledge for for-
ward search planning,” J. Mach. Learn. Res., vol. 9, pp. 683–718, Apr.
2008.

[26] B. Bonet and H. Geffner, “mGPT: A probabilistic planner based on
heuristic search,” J. Artif. Intell. Res., vol. 24, pp. 933–944, 2005.

[27] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan
generation through heuristic search,” J. Artif. Intell. Res., vol. 14, pp.
253–302, May 2000.

[28] R. Aler, D. Borrajo, and P. Isasi, “Using genetic programming to learn
and improve knowledge,” Artif. Intell., vol. 141, no. 1–2, pp. 29–56,
2002.

[29] R. Aler, D. Borrajo, and P. Isasi, “Evolving heuristics for planning,” in
Evolutionary Programming VII, ser. Lecture Notes in Computer Sci-
ence, V. Porto, N. Saravanan, D. Waagen, and A. Eiben, Eds. Hei-
delberg, Germany: Springer, 1998, vol. 1447, pp. 745–754.

[30] R. Aler, D. Borrajo, and P. Isasi, “Learning to solve planning problems
efficiently by means of genetic programming,” Evol. Comput., vol. 9,
no. 4, pp. 387–420, Winter, 2001.

[31] D. Borrajo and M. M. Veloso, “Lazy incremental learning of control
knowledge for efficiently obtaining quality plans,” Artif. Intell. Rev.,
vol. 11, no. 1–5, pp. 371–405, 1997.

[32] J. Levine and D. Humphreys, “Learning action strategies for planning
domains using genetic programming,” in EvoWorkshops, ser. Lecture
Notes in Computer Science, G. R. Raidl, J.-A. Meyer, M. Middendorf,
S. Cagnoni, J. J. R. Cardalda, D. Corne, J. Gottlieb, A. Guillot, E. Hart,
C. G. Johnson, and E. Marchiori, Eds. New York: Springer-Verlag,
2003, vol. 2611, pp. 684–695.

[33] J. Levine, H.Westerberg,M. Galea, andD. Humphreys, “Evolutionary-
based learning of generalised policies for AI planning domains,” in
Proc. 11th Annu. Conf. Genetic Evol. Comput., F. Rothlauf, Ed., 2009,
pp. 1195–1202.

[34] H. Terashima-Marín, P. Ross, C. J. F. Zárate, E. Löpez-Camacho, and
M. Valenzuela-Rendön, “Generalized hyper-heuristics for solving 2D
regular and irregular packing problems,” Annals OR, vol. 179, no. 1,
pp. 369–392, 2010.

[35] M. Samadi, A. Felner, and J. Schaeffer, “Learning from multiple
heuristics,” in Proc. 23rd AAAI Conf. Artif. Intell., D. Fox and C. P.
Gomes, Eds., 2008, pp. 357–362.

[36] E. K. Burke,M.Hyde, G.Kendall, G. Ochoa, E. Ozcan, and J. R.Wood-
ward, “A classification of hyper-heuristic approaches,” in Handbook
of Meta-Heuristics, M. Gendreau and J. Potvin, Eds., 2nd ed. New
York: Springer-Verlag, 2010, pp. 449–468.

[37] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable
Programs. Cambridge, MA: MIT Press, May 1994.

[38] J. H. Holland, Adaptation in Natural Artificial Systems. Ann Arbor,
MI: Univ. Michigan Press, 1975.

[39] D. J. Montana, “Strongly typed genetic programming,” Evol. Comput.,
vol. 3, no. 2, pp. 199–230, 1995.

[40] S. G. Ficici and J. B. Pollack, “A game-theoretic memory mech-
anism for coevolution,” in Genetic and Evolutionary Computa-
tion—GECCO-2003, E. Cantú-Paz, J. A. Foster, K. Deb, D. Davis, R.
Roy, U.-M. O’Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson,
M. Harman, J. Wegener, D. Dasgupta, M. A. Potter, A. C. Schultz,
K. Dowsland, N. Jonoska, and J. Miller, Eds. Berlin, Germany:
Springer-Verlag, 2003, pp. 286–297.

[41] S. J. Russell and P. Norvig, Artificial Intelligence: AModern Approach,
3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 2010.

[42] C. Birchenhall, N. Kastrinos, and S. Metcalfe, “Genetic algorithms in
evolutionary modelling,” J. Evol. Econom., vol. 7, no. 4, pp. 375–393,
1997.

[43] J. Pearl, Heuristics: Intelligent Search Strategies for Computer
Problem Solving, ser. Artificial Intelligence. Reading, MA: Ad-
dison-Wesley, 1984.

[44] P. Haslum, B. Bonet, and H. Geffner, “New admissible heuristics for
domain-independent planning,” in Proc. 20th Nat. Conf. Artif. Intell./
17th Innovative Appl. Artif. Intell. Conf., M. M. Veloso and S. Kamb-
hampati, Eds., Pittsburgh, PA, Jul. 2005, pp. 1163–1168.

[45] M. Helmert, Understanding Planning Tasks: Domain Complexity and
Heuristic Decomposition, ser. Lecture Notes in Computer Science.
Berlin, Germany: Springer-Verlag, 2008, vol. 4929.

[46] E. Pednault, “ADL: Exploring the middle ground between STRIPS and
the situation calculus,” in Proc. 1st Int. Conf. Principles Knowl. Rep-
resent. Reason., 1989, pp. 324–332.

Achiya Elyasaf received the B.Sc. (summa cum
laude) and M.Sc. (cum laude) degrees in computer
science from Ben-Gurion University of the Negev,
Beer Sheva, Israel, where he is currently working
toward the Ph.D. degree.
His current research involves the application of

evolutionary algorithms to heuristic search.
Mr. Elyasaf won Gold and Bronze Human-Com-

petitive Results Produced by Genetic and Evolu-
tionary Computation (HUMIE) awards for his work.

Ami Hauptman received the Ph.D. degree (with
distinction) in computer science for his research on
evolving heuristics for combinatorial games from
Ben-Gurion University of the Negev, Beer Sheva,
Israel, in 2010.
He advocates a rather nontraditional approach

to exploring large combinatorial problems, where
patterns of deep domain knowledge are evolved
or learned, and then used to guide search in a way
somewhat reminiscent of human thinking. He cur-
rently researches more analytical flavors of machine

learning at NICE Systems, but still hopes to bring peace between statistical and
evolved-knowledge-based methods. His current areas of interest include cyber
anomaly detection, social network analysis, and games.
Dr. Hauptman received three Human-Competitive Results Produced by Ge-

netic and Evolutionary Computation (HUMIE) awards (for his work with M.
Sipper), including a Gold Award in 2011 (with A. Elyasaf).

Moshe Sipper received the B.A. degree from the
Technion—Israel Institute of Technology, Haifa,
Israel, in 1985 and the M.Sc. and Ph.D. degrees from
Tel Aviv University, Tel Aviv, Israel, in 1989 and
1995, respectively, all in computer science.
He is a Professor of Computer Science at Ben-Gu-

rion University of the Negev, Beer Sheva, Israel.
During 1995–2001, he was a Senior Researcher at
the Swiss Federal Institute of Technology, Lausanne,
Switzerland. His current research focuses on evolu-
tionary computation, mainly as applied to software

development and games. At some point or other, he also did research in the
following areas: bioinspired computing, cellular automata, cellular computing,
artificial self-replication, evolvable hardware, artificial life, artificial neural
networks, fuzzy logic, and robotics.
Dr. Sipper has published over 140 scientific papers, and is the author of

three books: Evolved to Win (Raleigh, NC: Lulu Press, 2011), Machine Na-
ture: The Coming Age of Bio-Inspired Computing (New York: McGraw-Hill,
2002), and Evolution of Parallel Cellular Machines: The Cellular Program-
ming Approach (New York: Springer-Verlag, 1997). He is an Associate Ed-
itor of the IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI
IN GAMES and Genetic Programming and Evolvable Machines, an Editorial
Board Member ofMemetic Computing, and a past Associate Editor of the IEEE
TRANSACTIONS ON EVOLUTIONARY COMPUTATION. He won the 1999 EPFL
Latsis Prize, the 2008 BGU Toronto Prize for Academic Excellence in Re-
search, and five Human-Competitive Results Produced by Genetic and Evo-
lutionary Computation (HUMIE) Awards (Gold, 2011; Bronze, 2009; Bronze,
2008; Silver, 2007; Bronze, 2005).

