
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/340849715

Explanation Based Learning

Presentation · April 2020

CITATIONS

0
READS

64

2 authors, including:

Some of the authors of this publication are also working on these related projects:

Sleep detection using wavelet transform and neural networks View project

Shaik Naseera

Jawaharlal Nehru Technological University, Anantapur

42 PUBLICATIONS 67 CITATIONS

SEE PROFILE

All content following this page was uploaded by Shaik Naseera on 22 April 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/340849715_Explanation_Based_Learning?enrichId=rgreq-c54fa373eea37ca6255e90ea8394fdea-XXX&enrichSource=Y292ZXJQYWdlOzM0MDg0OTcxNTtBUzo4ODMyMDg1ODEzMDg0MTdAMTU4NzU4NDc0MzMyNQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/340849715_Explanation_Based_Learning?enrichId=rgreq-c54fa373eea37ca6255e90ea8394fdea-XXX&enrichSource=Y292ZXJQYWdlOzM0MDg0OTcxNTtBUzo4ODMyMDg1ODEzMDg0MTdAMTU4NzU4NDc0MzMyNQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Sleep-detection-using-wavelet-transform-and-neural-networks?enrichId=rgreq-c54fa373eea37ca6255e90ea8394fdea-XXX&enrichSource=Y292ZXJQYWdlOzM0MDg0OTcxNTtBUzo4ODMyMDg1ODEzMDg0MTdAMTU4NzU4NDc0MzMyNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c54fa373eea37ca6255e90ea8394fdea-XXX&enrichSource=Y292ZXJQYWdlOzM0MDg0OTcxNTtBUzo4ODMyMDg1ODEzMDg0MTdAMTU4NzU4NDc0MzMyNQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shaik_Naseera?enrichId=rgreq-c54fa373eea37ca6255e90ea8394fdea-XXX&enrichSource=Y292ZXJQYWdlOzM0MDg0OTcxNTtBUzo4ODMyMDg1ODEzMDg0MTdAMTU4NzU4NDc0MzMyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shaik_Naseera?enrichId=rgreq-c54fa373eea37ca6255e90ea8394fdea-XXX&enrichSource=Y292ZXJQYWdlOzM0MDg0OTcxNTtBUzo4ODMyMDg1ODEzMDg0MTdAMTU4NzU4NDc0MzMyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Jawaharlal_Nehru_Technological_University_Anantapur?enrichId=rgreq-c54fa373eea37ca6255e90ea8394fdea-XXX&enrichSource=Y292ZXJQYWdlOzM0MDg0OTcxNTtBUzo4ODMyMDg1ODEzMDg0MTdAMTU4NzU4NDc0MzMyNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shaik_Naseera?enrichId=rgreq-c54fa373eea37ca6255e90ea8394fdea-XXX&enrichSource=Y292ZXJQYWdlOzM0MDg0OTcxNTtBUzo4ODMyMDg1ODEzMDg0MTdAMTU4NzU4NDc0MzMyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shaik_Naseera?enrichId=rgreq-c54fa373eea37ca6255e90ea8394fdea-XXX&enrichSource=Y292ZXJQYWdlOzM0MDg0OTcxNTtBUzo4ODMyMDg1ODEzMDg0MTdAMTU4NzU4NDc0MzMyNQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Explanation Based Learning

Prof. Shaik Naseera
JNTUACEK

Introduction

• Generally, humans appear to learn quite a lot
from a single example.

Ex:- if we touch the heat, it burns our hand.
• Explanation-based learning (EBL) extracts

general rules from single example by
explaining the example and generalizing the
explanation.

Ex:- The knight’s attack on both the king and
queen of the chess board .

Example: chess game
The knight’s attack on the king and queen on the chess board is as
shown below. This position is called fork. Because knight attacks both
the king and queen . i.e., double simultaneous attack.

In fork, the chess layer should move the king thereby leaving the queen open to capture.

• From this single experience the player is able to
learn quite about the fork trap.

• The idea is that if any piece x attacks both the
opponents king and another piece y, then the
piece y will be lost.

• We don’t need to see dozens of positive and
negative examples of fork positions in order to
draw these conclusions.

• From this one experience, we learn to avoid this
trap in the future and perhaps to use it to our
own advantage.

What makes such single-example
learning possible?

• The answer is knowledge
• The chess player has plenty of domain specific

knowledge including the rules of chess and
previously acquired strategies.

• That knowledge is used to identify the critical
aspects of the training example.

• In case of fork, we know that the double
simultaneous attack is important while the
precise position and type of attacking piece is
not.

Another example

Strategy of EBL

• Unlike other methods, EBL is not data intensive.
• EBL is analytical and knowledge–intensive

approach.
• EBL system learn to attempt from a single

example x by explaining why x is an example for
the target concept.

• The explanation is the generalized and the
system’s performance is improved through the
availability of this knowledge.

• An EBL accepts 4 kinds of input:
– A training example-- what the learning program ”sees” in the world.
– A goal concept-- a high level description of what the program is supposed to learn.
– A operational criterion-- a description of which concepts are usable.
– A domain theory-- a set of rules that describe relationships between objects and actions

in a domain.

• From this EBL computes a generalization of the training example that is
sufficient not only to describe the goal concept but also satisfies the
operational criterion.

• In chess game, the goal
concept might be “bad
position for black”

• And the operationalzed
concept would be a
generalized description of
situations similar to the
training example, given in
terms of pieces and their
relative positions.

• The last input to EBL is
domain theory, in our
case, the rules of chess.

EBL generalization (EBG)

• This has two steps: Explain and generalize
• Explanation-- the domain theory is used to

prune away all unimportant aspects of the
training example with respect to the goal
concept.

• Generalization-- the explanation is generalized
as far possible while still describing the goal
concept.

Example: Chess game
• First EBL step chooses to

ignore white’s pawn, king
and rook and construct an
explanation of white’s
knight, black’s king and
black’s queen each in
their specific positions.

• Next, explanation is
generalized, i.e., moving
the pieces to different
part of the board is still
bad for the black.

Arithmetic simplification
• General rules in LISP, By using this knowledge base more general

rules are extracted
• simplify (Mult (Const 0) x) = Const 0
• simplify (Mult x (Const 0)) = Const 0
• simplify (Plus (Const 0) x) = simplify x // (constant 0 + x)
• simplify (Plus x (Const 0)) = simplify x //(x + constant 0)
• simplify (Mult (Const 1) x) = simplify x
• simplify (Mult x (Const 1)) = simplify x
• simplify (Minus x (Const 0)) = simplify x
• simplify (Plus (Const x) (Const y)) = Const (x + y)
• simplify (Minus (Const x) (Const y)) = Const (x - y)
• simplify (Mult (Const x) (Const y)) = Const (x * y)
• simplify x = x

Procedure for proof tree

• First thing is to convert the expression from infix
notation to an S-Expression (symbolic expression).

• Traverse the "tree" recursively and apply a set of rules
at each node.

e.g. if this node contains an operation whose operands
are both constants, perform the operation now and
replace the node with the result.

• Once the basic functionality was in place, it was a
matter of adding new new simplification rules to the
system.

Another example

• Suppose our problem is to simplify 1 x (0 + X).
• The knowledge base includes the following rules:
//if u is written as v and v is simplified to w then u is simplified to w

1. Rewrite(u, v) Ʌ Simplify(v, w) ⇒ Simplify(u, w) .
//if u is a primitive then u is simplified to u
2. Primitive (u) ⇒ Simplify (u, u) .
//if u is an arithmetic unknown then u is a primitive
3. ArithmetiUnknown (u) ⇒ Primitive (u).
//if u is a number then u is a primitive
4. Number (u) ⇒ Primitive (u) .
// 1xu is written as u
5. Rewrite(1 x u, u) .
//0+u is written as u
6. Rewrite(0 + u, u) .

Proof Tree for simplify 1 x (0 + X)

• The proof for the original problem instance using the rules from 1 to 6.
• The leaf nodes form the solution for the main problem.
Rewrite(1x(0+X),v)Ʌ Rewrite((0+X),v ’)Ʌ ArithmeticUnknown(X)⇒Simplify(1x(0+X),w)

• Notice that the first two conditions on the left-hand side are true regardless of the
value of X. We can therefore drop them from the rule, yielding

ArithmeticUnknown(x) ⇒ Simplify(1 x (0 + x), x)
•Proof, that the answer is X.

Generalized tree

• The below tree shows the proof for a problem
instance with all constants replaced by variables,
from which we can derive a variety of other rules.

EBL method
The EBL method actually constructs two proof trees simultaneously.
• The first proof for the original problem instance using the rules in knowledge base
• The second proof tree uses a variabilized goal in which the constants from the

original goal are replaced by variables.
• As the original proof proceeds, the variabilized proof proceeds in step, using

exactly the same rule applications.
• This could cause some of the variables to become instantiated. For example, in

order to use the rule Rewrite(1 x u, u), the variable x in the subgoal Rewrite(x x (y +
z), v) must be bound to 1.

• Similarly, y must be bound to 0 in the subgoal Rewrite(y + z, v') in order to use the
rule Rewrite(0 + u, u).

• Once we have the generalized proof tree, we take the leaves (with the necessary
bindings) and form a general rule for the goal predicate:

• Rewrite(1 x (0 + z) , 0 + z) A Rewrite(0 + z, z) A Arithmetic Unknown(z)⇒ Simplify(1
x (0 + z), z) .

• Notice that the first two conditions on the left-hand side are true regardless of the
value of z.

• We can therefore drop them from the rule, yielding
ArithmeticUnknown(z) ⇒ Simplify(1 x (0 + z), z)

Proof, that the answer is z.

Recap
• To recap, the basic EBL process works as follows:
1. Given an example, construct a proof that the goal predicate

applies to the example using the available background
knowledge.

2. In parallel, construct a generalized proof tree for the
variabilized goal using the same inference steps as in the
original proof.

3. Construct a new rule whose left-hand side consists of the
leaves of the proof tree and whose right-hand side is the
variabilized goal (after applying the necessary bindings
from the generalized proof).

4. Drop any conditions that are true regardless of the values of
the variables in the goal.

Improving the Efficiency

View publication statsView publication stats

https://www.researchgate.net/publication/340849715

