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Mobile Networks for Computer Go

Tristan Cazenave
LAMSADE, Université Paris-Dauphine, PSL, PRAIRIE, CNRS, Paris, France

The architecture of the neural networks used in Deep Reinforcement Learning programs such as Alpha Zero or Polygames has
been shown to have a great impact on the performances of the resulting playing engines. For example the use of residual networks
gave a 600 ELO increase in the strength of Alpha Go. This paper proposes to evaluate the interest of Mobile Network for the game
of Go using supervised learning as well as the use of a policy head and a value head different from the Alpha Zero heads. The
accuracy of the policy, the mean squared error of the value, the efficiency of the networks with the number of parameters, the
playing speed and strength of the trained networks are evaluated.

Index Terms—Deep Learning. Neural Networks. Board Games. Game of Go.

I. INTRODUCTION

This paper is about the efficiency of neural networks trained
to play the game of Go. Mobile Networks [1], [2] are com-
monly used in computer vision to classify images. They obtain
high accuracy for standard computer vision datasets while
keeping the number of parameters lower than other neural
networks architectures.

In computer Go and more generally in board games the
neural networks usually have more than one head. They have
at least a policy head and a value head. The policy head is
evaluated with the accuracy of predicting the moves of the
games and the value head is evaluated with the Mean Squared
Error (MSE) on the predictions of the outcomes of the games.
The current state of the art for such networks is to use residual
networks [3], [4], [5].

The architectures used for neural networks in supervised
learning and Deep Reinforcement Learning in games can
greatly change the performances of the associated game play-
ing programs. For example residual networks gave AlphaGo
Zero a 600 ELO gain in playing strength compared to standard
convolutional neural networks.

Residual networks will be compared to Mobile Networks
for computer Go. Different options for the policy head and the
value head will also be compared. The basic residual networks
used for comparison are networks following exactly the Al-
phaGo Zero and Alpha Zero architectures. The improvements
due to Mobile Networks and changes in the policy head and
the value head are not specific to computer Go and can be
used without modifications for other games.

This research originated from a computer Go tournament
I organized for my master students. In order for the students
to validate my Deep Learning course for the IASD master at
University Paris-Dauphine, PSL, I made them train computer
Go neural networks they could submit to tournaments played
on a weekly basis [6]. In order to be fair about training
resources the number of parameters for the networks had to be
lower than 1 000 000. The goal was to train a neural network
using supervised learning on a dataset of 500 000 games
played by ELF/OpenGo [7] at a superhuman level. There were

Corresponding author: T. Cazenave (email: Tris-
tan.Cazenave@dauphine.psl.eu)

more than 109 000 000 different states in this dataset. I gave
the students a Python library I programmed in C++ so as
to randomly build batches of tensors representing states that
could be used to give inputs and outputs to the networks. I also
programmed a Monte Carlo Tree Search (MCTS) algorithm
close to PUCT so as to make the students neural networks
play against each other in a round robin tournament.

The remainder of the paper is organized as follows. The
second section presents related works in Deep Reinforcement
Learning for games. The third section describes the training
and the test sets. The fourth section details the neural networks
that are tested for the game of Go. The fifth section gives
experimental results.

II. ZERO LEARNING

Monte Carlo Tree Search (MCTS) [8], [9] made a revolution
in board games Artificial Intelligence. A second revolution
occurred when it was combined with Deep Reinforcement
Learning which led to superhuman level of play in the game
of Go with the AlphaGo program [10].

Residual networks [3], combined with policy and value shar-
ing the same network and Expert Iteration [11] did improve
much on AlphaGo leading to AlphaGo Zero [4] and zero
learning. With these improvements AlphaGo Zero was able
to learn the game of Go from scratch and surpassed AlphaGo.

Later Alpha Zero successfully applied the same principles
to the games of Chess and Shogi [5].

Other researchers developed programs using zero learning
to play various games.

ELF/OpenGo [7] is an open-source implementation of
AlphaGo Zero for the game of Go. After two weeks of
training on 2 000 GPUs it reached superhuman level and beat
professional Go players.

Leela Zero [12] is an open-source program that uses a
community of contributors who donate GPU time to replicate
the Alpha Zero approach. It has been applied with success to
Go and Chess.

Crazy Zero by Rémi Coulom is a zero learning framework
that has been applied to the game of Go as well as Chess,
Shogi, Gomoku, Renju, Othello and Ataxx. With limited
hardware it was able to reach superhuman level at Go using
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large batches in self-play and improvements of the targets to
learn such as learning territory in Go. Learning territory in Go
increases considerably the speed of learning.

KataGo [13] is an open-source implementation of AlphaGo
Zero that improves learning in many ways. It converges to
superhuman level much faster than alternative approaches
such as Elf/OpenGo or Leela Zero. It makes use of different
optimizations such as using a low number of playouts for most
of the moves in a game so as to have more data about the value
in a shorter time. It also uses additional training target so as
to regularize the networks.

Galvanise Zero [14] is an open-source program that is linked
to General Game Playing (GGP) [15]. It uses rules of different
games represented in the Game Description Language (GDL)
[16], which makes it a truly general zero learning program able
to be applied as is to many different games. The current games
supported by Galvanise Zero are Chess, Connect6, Hex11,
Hex13, Hex19, Reversi8, Reversi10, Amazons, Breakthrough,
International Draughts.

Polygames [17] is a generic implementation of Alpha Zero
that has been applied to many games, surpassing human play-
ers in difficult games such as Havannah and using architectural
innovations such as a fully convolutional policy head.

III. THE TRAINING AND THE TEST SETS

We use two datasets for training the networks.
The first dataset used for training comes from the Leela

Zero Go program self played games. The selected games are
the last 2 000 000 games of self play, starting at game number
19 000 000. The input data is composed of 21 19x19 planes
(color to play, ladders, liberties, current state on two planes,
four previous states on four planes). The output targets are the
policy (a vector of size 361 with 1.0 for the move played, 0.0
for the other moves), the value (1.0 if White won, 0.0 if Black
won).

The second dataset is the ELF dataset. It is built from the
last 1 347 184 games played by ELF, it contains 301 813 318
states.

At the beginning of training and for each dataset 100 000
games are taken at random as a validation set and one state is
selected for each game to be included in the validation set. The
validation set for the Leela dataset only contains games from
Leela and the validation set for the ELF dataset only contains
games from ELF. The same set of states in the validation sets
are used for all networks. These games and states are never
used for training, none of the states present in the same game
as a state in the test set are used for training. We define one
epoch as 1 000 000 samples. For each sample in the training
set a random symmetry among the eight possible symmetries
is chosen.

Both datasets contain games played at superhuman level.
The Leela games are played at a better level than the ELF
games since the latest versions of Leela are stronger than ELF.

IV. NETWORKS ARCHITECTURES, TRAINING AND USE

A. Residual Networks
Residual networks improve much on convolutional networks

for the game of Go [3], [4]. In AlphaGo Zero they gave an

increase of 600 ELO in the level of play. The principle of
residual networks is to add the input of a residual block to
its output. A residual block is composed of two convolutional
layers with ReLU activations and batch normalization. For our
experiments we use for Alpha Zero like networks the same
block as in AlphaGo Zero.

Another architecture optimization used in AlphaGo Zero is
to combine the policy and the value in a single network with
two heads. It also enables an increase of 600 ELO in the level
of play [4]. All the networks we test have two heads, one for
the policy and one for the value.

B. Mobile Networks

MobileNet [1] followed by MobileNetV2 [2] provide a
parameter efficient neural network architecture for computer
vision. The principle of MobileNetV2 is to have blocks as
in residual networks where the input of a block is added to
its output. But instead of usual convolutional layers in the
block they use depthwise convolutions. Moreover the number
of channels at the input and the output of the blocks (in the
trunk) is much smaller than the number of channels for the
depthwise convolutions in the block. In order to efficiently
pass from a small number of channels in the trunk to a greater
number in the block, usual convolutions with cheap 1x1 filters
are used at the entry of the block and at its output.

The Keras [18], [19] source code we used for the Mobile
models is given in the appendix.

C. Optimizing the Heads

The AlphaGo Zero policy head uses 1x1 convolutions to
project the 256 channels to two channels and then it flattens
the channels and uses a dense layer with 362 outputs for all
possible legal moves in Go. The AlphaGo Zero value head uses
1x1 convolutions to project the 256 channels to one channel
and then it flattens the channel, connects it to a dense layer
with 256 outputs and then connects these outputs to a single
output for the value [4].

We experimented with different policy and value heads. For
the policy head we tried a fully convolutional policy head. It
does not use a dense layer. Instead it uses 1x1 convolutions to
project the channels to a single channel, then it simply flattens
the channel directly giving 361 outputs, one for each possible
move except the pass move. The fully convolutional head has
already been used in Polygames [17].

For the value head we experimented with average pooling.
The use of Spatial Average Pooling in the value head has
already been shown to be an improvement for Golois [20].
It was also used in Katago [13] and in Polygames [17]. In
this paper we experiment with Global Average Pooling for
the value head. Each channel is averaged among its whole
19x19 plane leading to a vector of size equal to the number
of channels. It is then connected to a dense layer with 50
outputs. The last layer is a dense layer with one output for the
value.
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D. Training
Training of the networks uses the Keras/Tensorflow frame-

work. We define an epoch as 1 000 000 states. The evaluation
on the test set is computed every epoch. The loss used for
the value in the Alpha Zero papers is the mean squared error
(MSE). We keep this loss for the validation and the tests of
the networks in order to compare them on an equal basis. In
some of the network we train the value with the binary cross
entropy loss which seems more adapted to the learning of the
value (i.e. we want to know if the game is won or lost). We
also experiment with a weight on the value loss. The binary
cross entropy loss is usually greater than the mean squared
error loss, but we can make it even greater by multiplying the
loss with a constant.

The batch size is fixed to 32. The annealing schedule is to
train with a learning rate of 0.005 for the first 100 epochs.
Then to train with a learning rate of 0.0005 from 100 to 150
epochs. Then to train with a learning rate of 0.00005 from
150 to 200 epochs. It enables to fine tune the networks when
the learning stalls. This is similar to the Alpha Zero annealing
schedule which also divides the learning rate by ten every
200 epochs in the beginning and every 100 epochs in the end.
Using this schedule the training of a large mobile network
approximately takes 12 days with a V100 card.

For all networks we use a L2 regularization during training
with a weight of 0.0001. We found that the validation loss and
the level of the trained network is much better when using
regularization.

E. Inputs and Outputs
The inputs of the networks use the colors of the stones, the

liberties, the ladder status of the stone, the ladder status of
adjacent strings (i.e. if an adjacent string is in ladder), the last
5 states and a plane for the color to play. The total number of
planes used to encode a state is 21.

The outputs are a 0 or a 1 for the value head. A 0 means
Black has won the game and a 1 means it is White. For the
policy head there is a 1 for the move played in the state and 0
for all other moves. The output for the policy head is different
from the output used in Alpha Zero since AlphaGo Zero and
Alpha Zero use Expert Iteration [11] which gives as output the
number of time the moves has been tried in the PUCT search
divided by the total number of evaluations in the PUCT search.

F. Self Play Speed
A program that plays games against itself so as to generate

more training data can be strongly parallelized. Parallelizing
the different games being played can greatly speedup the over-
all reinforcement learning process. Both the forward pass of
the network and the building of the batches can be parallelized.
Parallelizing the forward passes is effectively done by building
large batches of states with one state per self played game. The
GPU is good at effectively parallelizing the forward pass on
large batches. The building of the inputs of the large batches
can also be strongly parallelized using threads.

Smaller networks are faster and enable larger batches for
self play. This is why most programs start training with small
networks and make them grow during learning.

V. EXPERIMENTAL RESULTS

For all the experiments the training uses batch of 256
samples. The learning rate starts at 0.005 for the whole batch
as it is a stable learning rate that decreases the loss as fast as
possible. The learning rate is then divided by 10 at 100 and
150 epochs in order to fine tune the networks. The regularizer
is the L2 loss with a weight of 0.0001.

We had problems with the Alpha Zero value head: it often
did not learn even after many epochs so we replace it with
another value head using average pooling. The use of average
pooling layers for the value has been described previously in
Golois [20], KataGo [13] and Polygames [17]. The value head
we used has a global average pooling layer followed by a dense
layer of 50 neurons and another dense layer with one output.
We used the same value head for all our networks since it
gave better results than the Alpha Zero value head. Even with
this value head it was necessary to launch multiple times the
training of the large Alpha Zero like networks in order to start
the convergence of the value.

A. Networks with less than one million parameters

The Alpha Zero like network has 10 residual blocks of
63 filters and the Alpha Zero policy head. It has 986 748
parameters. During training it uses the MSE loss for the value
and the Categorical Crossentropy loss for the policy. The
network is called a0.small.

The Alpha Zero like fully convolutional network has 13
residual blocks of 64 filters. For the policy head it does not
use a dense layer, just a 1x1 convolution to a single plane and
a flatten. The usual residual blocks used by Alpha Zero can
have problems with this policy head (the policy loss initially
stays close to zero). It is better to use the Golois residual
blocks [21]: the rectifier is after the convolution, the batch
normalization is after the addition. It has 968 485 parameters.
During training it uses the Binary Crossentropy loss for the
value and the Categorical Crossentropy loss for the policy. The
network is called a0.small.conv.bin.

The third network is the same as the Alpha Zero like fully
convolutional network except that it uses a weight of 4 for the
value loss. It is called a0.small.conv.bin.val4.

The fourth network uses 25 MobileNet blocks with a trunk
of 64 and 200 filters inside the blocks. It uses the Alpha Zero
policy head. It has 997 506 parameters. During training it uses
the MSE loss for the value and the Categorical Crossentropy
loss for the policy. The network is called mobile.small.

The fifth network uses 33 MobileNet blocks with a trunk
of 64 and 200 filters inside the blocks. It uses the fully
convolutional policy head. It has 970 477 parameters. During
training it uses the Binary Crossentropy loss for the value and
the Categorical Crossentropy loss for the policy. The network
is called mobile.small.conv.bin.

The sixth network is the same as the fifth network except
that it has a weight of 4 on the value loss. The network is
called mobile.small.conv.bin.val4.

Figure 1 gives the evolution of the accuracy for all small
networks. The Alpha Zero like networks have a lower accuracy
than the Mobile networks. The best network use MobileNet
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Fig. 1: The evolution of the policy validation accuracy for the
different networks with less than one million parameters.

Fig. 2: The evolution of the value validation MSE loss for the different
networks with less than one million parameters.

blocks together with a fully convolutional policy head and
global average pooling for the value head. The Alpha Zero
like network has the worst results. When removing the policy
head and keeping only a 1x1 convolution the results get
better. Using MobileNets with the Alpha Zero policy head is
close to the fully convolutional Alpha Zero network. Training
a fully convolutional MobileNet improves much the results.
Finally putting a weight of four on the value loss of the fully
convolutional MobileNet does not hurt much the training of
the policy.

We can see in figure 2 that the small Alpha Zero like
network does not learn the value within 200 epochs. We tried
to launch the a0 training multiple times but did not succeed in
learning both the policy and the value with a small network on
the Leela dataset. The best value is obtained with a MobileNet
with a weight of 4 on the value loss. With a weight of 1 the
MobileNet is still the second best for the value, better than
the Alpha Zero like networks.

Fig. 3: The evolution of the validation policy accuracy for the
different unbounded networks.

B. Unbounded Networks

We now experiments with large networks of sizes similar
to the sizes of the Alpha Zero networks.

The Alpha Zero like networks have n residual blocks of
256 filters and the Alpha Zero policy head. During training
they uses the MSE loss for the value and the Categorical
Crossentropy loss for the policy. The networks are called a0.n.
We test the networks with 10, 20 and 40 residual blocks.

The MobileNets networks use n MobileNet blocks with a
trunk of 128 and 512 filters inside the blocks. They use the
Alpha Zero policy head. During training they use the MSE
loss for the value and the Categorical Crossentropy loss for the
policy. The network are called mobile.n. We test the networks
with 10, 20 and 40 MobileNet blocks.

The MobileNets fully convolutional networks use n Mo-
bileNet blocks with a trunk of 128 and 512 filters inside the
blocks. They use the fully convolutional policy head. During
training they use the Binary Crossentropy loss for the value
and the Categorical Crossentropy loss for the policy. The
networks are called mobile.conv.bin.n. We test the networks
with 10, 20 and 40 MobileNet blocks.

The MobileNets fully convolutional networks with a weight
of 4 on the value loss are called mobile.conv.bin.val4.n. We
test the networks with 10, 20 and 40 MobileNet blocks.

Figure 3 gives the validation policy accuracy for the Alpha
Zero like network and two Mobile networks. The Mobile
networks have better accuracy and the fully convolutional
policy head is slightly better.

Figure 4 show that the validation MSE loss of the value
is also better for Mobile networks than for Alpha Zero like
networks.

C. Parameter Efficiency

We now give results for the validation accuracy and the
validation MSE loss according to the number of parameters
of the networks. We compare Mobile networks with fully
convolutional policy head and global average pooling value
head to Alpha Zero residual networks.



5

Fig. 4: The evolution of the validation value MSE loss for the different
unbounded networks.

Fig. 5: The evolution of the policy validation accuracy with the
number of parameters.

Fig. 6: The evolution of the value validation MSE Loss with the
number of parameters.

Fig. 7: The evolution of the policy validation accuracy for the
different networks with less than one million parameters on the ELF
dataset.

Figure 5 gives the accuracy of the different networks ac-
cording to the number of parameters. The Mobile networks
that are trained have 10, 20 and 40 Mobile blocks, a trunk of
128 and 512 filters inside the blocks. The Alpha Zero networks
have 5, 10, 15, 20, 30 and 40 residual blocks of 256 filters.
Mobile networks have a comparable accuracy with much less
parameters

Figure 6 gives the MSE loss of Mobile networks and
residual network according to the number of parameters.
Mobile networks have a much better evaluation than residual
networks with much fewer parameters.

D. Training on ELF self-played games

Learning the value is difficult for Alpha Zero like networks
on the Leela games. This may be due to Leela Zero resigning
long before the endgame in states difficult to evaluate. The
ELF self-played games are from a weaker engine and contains
states easier to evaluate. The same networks as in the previous
section are tested on the ELF dataset.

We can see in figure 7 that the Alpha Zero like network is
worse than a fully convolutional MobileNet on the ELF dataset
with a network of less than 1 000 000 parameters.

Figure 8 shows that small Alpha Zero like networks can
learn the value of the ELF dataset when they could not on the
Leela dataset. Nevertheless, the small Mobile networks still
better learn the value than the Alpha Zero like networks.

We can see in figure 9 that large Mobile networks have
a better policy accuracy that large Alpha Zero like networks
even if the Mobile network tested has much less parameters
than the Alpha Zero network.

Figure 10 show that the Mobile network we tested is slightly
better for learning the value than the 20 blocks residual
networks.

Figure 11 and 12 show the parameter efficiency of Mobile
and residual networks for the policy and the value on the ELF
dataset. The policy accuracy and the value MSE loss are better
for Mobile networks than for residual networks while using
much less parameters. The networks used for this experiment
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Fig. 8: The evolution of the value validation MSE loss for the different
networks with less than one million parameters on the ELF dataset.

Fig. 9: The evolution of the validation policy accuracy for the
different unbounded networks on the ELF dataset.

Fig. 10: The evolution of the validation value MSE loss for the
different unbounded networks on the ELF dataset.

Fig. 11: The evolution of the policy validation accuracy with the
number of parameters on the ELF dataset.

Fig. 12: The evolution of the value validation MSE Loss with the
number of parameters on the ELF dataset.

are the 10, 20 and 40 blocks Mobile networks and the 5, 10,
15 and 20 residual blocks networks.

E. Self Play Speed

We can see in table I the number of states evaluated per
second according to the size of the batch in input of the
networks. For small batches residual networks are more than
twice as fast as Mobile networks. For large batches residual
networks are still faster but close to the speed of Mobile
networks. The GPU used for the experiments is a RTX 2080
Ti and the CPU is a 24 cores computer.

F. Making the networks play

I made a round robin tournament between some of the net-
works in order to compare their level of play. The tournament
gives each network one second per move using a RTX 2080
Ti. It accounts for around 300 evaluations per move for the big
networks and around 500 evaluations per move for the small
networks. The large residual networks result in more playouts
per seconds than the relatively large Mobile networks. The
MCTS algorithm used is PUCT. In order to have diversity
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TABLE I: Comparison of the number of states per second.

Network Batch Size Hardware Speed

a0.20.256 4 096 GPU 1 053.04
a0.20.256 8 192 GPU 1 598.43
a0.20.256 16 384 GPU 2 114.54
a0.20.256 32 768 GPU 2 533.68
a0.20.256 65 536 GPU 2 536.46
mobile.conv.avg.bin.40.128.512 4 096 GPU 462.54
mobile.conv.avg.bin.40.128.512 8 192 GPU 846.67
mobile.conv.avg.bin.40.128.512 16 384 GPU 1 327.23
mobile.conv.avg.bin.40.128.512 32 768 GPU 1 899.46
mobile.conv.avg.bin.40.128.512 65 536 GPU 2 061.72
a0.20.256 16 CPU 15.88
a0.20.256 32 CPU 32.91
a0.20.256 64 CPU 64.64
a0.20.256 128 CPU 127.63
a0.20.256 256 CPU 247.54
a0.20.256 512 CPU 481.34
a0.20.256 1 024 CPU 995.14
a0.20.256 2 048 CPU 1 809.63
a0.20.256 4 096 CPU 2 790.53
a0.20.256 8 192 CPU 4 811.88
a0.20.256 16 384 CPU 6 639.80
a0.20.256 32 768 CPU 7 940.65
a0.20.256 65 536 CPU 9 395.22
mobile.conv.avg.bin.40.128.512 16 CPU 5.72
mobile.conv.avg.bin.40.128.512 32 CPU 11.40
mobile.conv.avg.bin.40.128.512 64 CPU 23.16
mobile.conv.avg.bin.40.128.512 128 CPU 45.58
mobile.conv.avg.bin.40.128.512 256 CPU 88.34
mobile.conv.avg.bin.40.128.512 512 CPU 193.15
mobile.conv.avg.bin.40.128.512 1 024 CPU 377.37
mobile.conv.avg.bin.40.128.512 2 048 CPU 643.34
mobile.conv.avg.bin.40.128.512 4 096 CPU 1 344.05
mobile.conv.avg.bin.40.128.512 8 192 CPU 2 108.71
mobile.conv.avg.bin.40.128.512 16 384 CPU 3 919.71
mobile.conv.avg.bin.40.128.512 32 768 CPU 5 754.23
mobile.conv.avg.bin.40.128.512 65 536 CPU 6 679.22

in the games played by the same networks I randomized the
choice of moves. Each move is ranked by the number of
evaluations that are below it in the PUCT tree. If the second
best move has more than half the number of evaluations of the
best move, it becomes a candidate for the move to be played.
The engine chooses the second best move with probability 0.5
when the second best move is candidate, otherwise it plays the
best move.

The results of the tournament are given in table II. The
networks that play are networks trained on the Leela dataset.
The network that has the best level of play is the large Mobile
network with a weight of 1 on the binary cross entropy value
loss. It is followed by the large Mobile network with a weight
of 4 on the value loss. Even if the MSE loss is smaller with
a weight of 4 on the value it does not result in stronger play.
The small Mobile network is slightly better that the 20 blocks
residual network. The worst network is the small residual one
since it could not learn the value and due to that only plays
according to its policy.

I also made the mobile.conv.avg.bin.40.128.512 network
play on KGS. It plays instantly using the best move of the
policy. It reached a stable 5 dan ranking. It is better than
my previous residual policy network which reached a 4 dan
ranking [3].

TABLE II: Round robin tournament between networks trained on the
Leela dataset.

Network Games Winrate σ

mobile.conv.avg.bin.40.128.512 252 0.754 0.027
mobile.conv.avg.bin.val4.40.512.128 252 0.710 0.029
mobile.conv.avg.bin.33.200.64 252 0.671 0.030
a0.20.256 252 0.591 0.031
mobile.conv.avg.bin.val4.33.200.64 252 0.575 0.031
a0.conv.avg.bin.val4.13.64 252 0.377 0.031
a0.conv.avg.bin.13.64 252 0.313 0.028
a0.8.66 252 0.008 0.006

VI. CONCLUSION

Residual networks were compared to Mobile networks with
a fully convolutional policy head and a global average pooling
value head. For the Leela dataset composed of games played
at a superhuman level by a strong engine Mobile networks
are better than residual networks both for small and for
large networks. They have a better accuracy and value error.
They are also better when compared according to the number
of parameters of the networks. A tournament between the
different networks using a fixed time per move confirmed that
Mobile networks play better than residual networks that use
many more parameters.
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APPENDIX
SOURCE CODE

filters = 512
trunk = 128

def bottleneck_block(x, expand=filters, squeeze=trunk):
m = layers.Conv2D(expand, (1,1),

kernel_regularizer=regularizers.l2(0.0001),
use_bias = False)(x)

m = layers.BatchNormalization()(m)
m = layers.Activation(’relu’)(m)
m = layers.DepthwiseConv2D((3,3), padding=’same’,

kernel_regularizer=regularizers.l2(0.0001),
use_bias = False)(m)

m = layers.BatchNormalization()(m)
m = layers.Activation(’relu’)(m)
m = layers.Conv2D(squeeze, (1,1),

kernel_regularizer=regularizers.l2(0.0001),
use_bias = False)(m)

m = layers.BatchNormalization()(m)
return layers.Add()([m, x])

def getModel ():
input = keras.Input(shape=(19, 19, 21), name=’board’)
x = layers.Conv2D(trunk, 1, padding=’same’,

kernel_regularizer=regularizers.l2(0.0001))(input)
x = layers.BatchNormalization()(x)
x = layers.ReLU()(x)
for i in range (blocks):

x = bottleneck_block (x, filters, trunk)
policy_head = layers.Conv2D(1, 1, activation=’relu’, padding=’same’,

use_bias = False,
kernel_regularizer=regularizers.l2(0.0001))(x)

policy_head = layers.Flatten()(policy_head)
policy_head = layers.Activation(’softmax’, name=’policy’)(policy_head)
value_head = layers.GlobalAveragePooling2D()(x)
value_head = layers.Dense(50, activation=’relu’,

kernel_regularizer=regularizers.l2(0.0001))(value_head)
value_head = layers.Dense(1, activation=’sigmoid’, name=’value’,

kernel_regularizer=regularizers.l2(0.0001))(value_head)

model = keras.Model(inputs=input, outputs=[policy_head, value_head])

return model
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