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Abstract 

This paper examines whether temporal difference methods for training 
connectionist networks, such as Suttons's TO('\) algorithm, can be suc­
cessfully applied to complex real-world problems. A number of important 
practical issues are identified and discussed from a general theoretical per­
spective. These practical issues are then examined in the context of a case 
study in which TO('\) is applied to learning the game of backgammon 
from the outcome of self-play. This is apparently the first application of 
this algorithm to a complex nontrivial task. It is found that, with zero 
knowledge built in, the network is able to learn from scratch to play the 
entire game at a fairly strong intermediate level of performance, which is 
clearly better than conventional commercial programs, and which in fact 
surpasses comparable networks trained on a massive human expert data 
set. The hidden units in these network have apparently discovered useful 
features, a longstanding goal of computer games research. Furthermore, 
when a set of hand-crafted features is added to the input representation, 
the resulting networks reach a near-expert level of performance, and have 
achieved good results against world-class human play. 

1 INTRODUCTION 

We consider the prospects for applications of the TO('\) algorithm for delayed re­
inforcement learning, proposed in (Sutton, 1988), to complex real-world problems. 
TO('\) is an algorithm for adjusting the weights in a connectionist network which 
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has the following form: 
t 

~Wt = Q(PHI - Pt ) L: At-I:VwPI: (1) 
1:=1 

where Pt is the network's output upon observation of input pattern Zt at time t, W 

is the vector of weights that parameterizes the network, and VwPI: is the gradient 
of network output with respect to weights. Equation 1 basically couples a temporal 
difference method for temporal credit assignment with a gradient-descent method 
for structural credit assigment; thus it provides a way to adapt supervised learning 
procedures such as back-propagation to solve temporal credit assignment problems. 
The A parameter interpolates between two limiting cases: A = 1 corresponds to an 
explicit supervised pairing of each input pattern Zt with the final reward signal, 
while A = 0 corresponds to an explicit pairing of Zt with the next prediction PHI. 

Little theoretical guidance is available for practical uses of this algorithm. For exam­
ple, one of the most important i88ues in applications of network learning procedures 
is the choice of a good representation scheme. However, the existing theoretical 
analysis of TD( A) applies primarily to look-up table representations in which the 
network has enough adjustable parameters to explicitly store the value of every 
p088ible state in the state space. This will clearly be intractable for real-world 
problems, and the theoretical results may be completely inappropriate, as they in­
dicate, for example, that every possible state in the state space has to be visited 
infinitely many times in order to guarantee convergence. 

Another important class of practical i88ues has to do with the nature of the task 
being learned, e.g., whether it is noisy or deterministic. In volatile environments 
with a high step-to-step variance in expected reward, TD learning is likely to be 
difficult. This is because the value of Pt+1, which is used as a heuristic teacher 
signal for Pt , may have nothing to do with the true value of the state Zt. In such 
cases it may be necessary to modify TD(A) by including a lookahead process which 
averages over the step-to-step noise. 

Additional difficulties must also be expected if the task is a combined prediction­
control task, in which the predictor network is used to make control decisions, as 
opposed to a prediction only task. As the network's predictions change, its control 
strategies also change, and this changes the target predictions that the network is 
trying to learn. In this case, theory does not say whether the combined learning 
system would converge at all, and if so, whether it would converge to the optimal 
predictor-controller. It might be possible for the system to get stuck in a self­
consistent but non-optimal predictor-controller. 

A final set of practical i88ues are algorithmic in nature, such as convergence, scaling, 
and the p088ibility of overtraining or overfitting. TD( A) has been proven to converge 
only for a linear network and a linearly independent set of input patterns (Sutton, 
1988; Dayan, 1992). In the more general case, the algorithm may not converge even 
to a locally optimal solution, let alone to a globally optimal solution. 

Regarding scaling, no results are available to indicate how the speed and quality 
of TD learning will scale with the temporal length of sequences to be learned, the 
dimensionality of the input space, the complexity of the task, or the size of the 
network. Intuitively it seems likely that the required training time might increase 
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dramatically with the sequence length. The training time might also scale poorly 
with the network or input space dimension, e.g., due to increased sensitivity to 
noise in the teacher signal. Another potential problem is that the quality of solution 
found by gradient-descent learning relative to the globally optimal solution might 
get progressively worse with increasing network size. 

Overtraining occurs when continued training of the network results in poorer per­
formance. Overfitting occurs when a larger network does not do as well on a task 
as a smaller network. In supervised learning, both of these problems are believed 
to be due to a limited data set. In the TD approach, training takes place on-line 
using patterns generated de novo, thus one might hope that these problems would 
not occur. But both overtraining and overfitting may occur if the error function 
minimized during training does not correspond to the performance function that 
the user cares about. For example, in a combined prediction-control task, the user 
may care only about the quality of control signals, not the absolute accuracy of the 
predictions. 

2 A CASE STUDY: TD LEARNING OF 
BACKGAMMON STRATEGY 

We have seen that existing theory provides little indication of how TD(A) will behave 
in practical applications. In the absence of theory, we now examine empirically the 
above-mentioned issues in the context of a specific application: learning to play the 
game of backgammon from the outcome of self-play. This application was selected 
because of its complexity and stochastic nature, and because a detailed comparison 
can be made with the alternative approach of supervised learning from human 
expert examples (Tesauro, 1989j Tesauro, 1990). 

It seems reasonable that, by watching two fixed opponents play out a large number 
of games, a network could learn by TD methods to predict the expected outcome of 
any given board position. However, the experiments presented here study the more 
interesting question of whether a network can learn from its own play. The learning 
system is set up as follows: the network observes a sequence of board positions 
Zl, Zl, ••• , Z J leading to a final reward signal z. In the simplest case, z = 1 if White 
wins and z = 0 if Black wins. In this case the network's output Pe is an estimate 
of White's probability of winning from board position Ze. The sequence of board 
positions is generated by setting up an initial configuration, and making plays for 
both sides using the network's output as an evaluation function. In other words, 
the move which is selected at each time step is the move which maximizes Pe when 
White is to play and minimizes Pe when Black is to play. 

The representation scheme used here contained only a simple encoding of the "raw" 
board description (explained in detail in figure 2), and did not utilize any additional 
pre-computed "features" relevant to good play. Since the input encoding scheme 
contains no built-in knowledge about useful features, and since the network only 
observes its own play, we may say that this is a "knowledge-free" approach to 
learning backgammon. While it's not clear that this approach can make any progress 
beyond a random starting state, it at least provides a baseline for judging other 
approaches using various forms of built-in knowledge. 
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The approach described above is similar in spirit to Samuel's scheme for learning 
checkers from self-play (Samuel, 1959), but in several ways it is a more challenging 
learning task. Unlike the raw board description used here, Samuel's board descrip­
tion used a number of hand-crafted features which were designed in consultation 
with human checkers experts. The evaluation function learned in Samuel's study 
was a linear function of the input variables, whereas multilayer networks learn more 
complex nonlinear functions. Finally, Samuel found that it was necessary to give 
the learning system at least one fixed intermediate goal, material advantage, as well 
as the ultimate goal of the game. The proposed backgammon learning system has 
no such intermediate goals. 

The networks had a feedforward fully-connected architecture with either no hidden 
units, or a single hidden layer with between 10 and 40 hidden units. The learning 
algorithm parameters were set, after a certain amount of parameter tuning, at 
Q = 0.1 and A = 0.7. 

The average sequence length appeared to depend strongly on the quality of play. 
With decent play on both sides, the average game length is about 50-60 time steps, 
whereas for the random initial networks, games often last several hundred or even 
several thousand time steps. This is one of the reasons why the proposed self­
learning scheme appeared unlikely to work. 

Learning was assessed primarily by testing the networks in actual game play against 
Sun Microsystems' Gammontool program. Gammontool is representative of the 
playing ability of typical commercial programs, and provides a decent benchmark 
for measuring game-playing strength: human beginners can win about 40% of the 
time against it, decent intermediate-level humans would win about 60%, and human 
experts would win about 75%. (The random initial networks before training win 
only about 1%.) 

Networks were trained on the entire game, starting from the opening position and 
going all the way to the end. This is an admittedly naive approach which was not 
expected to yield any useful results other than a reference point for judging more 
sensible approaches. However, the rather surprising result was that a significant 
amount of learning actually took place. Results are shown in figure 1. For compar­
ison purposes, networks with the same input coding scheme were also trained on 
a massive human expert data base of over 15,000 engaged positions, following the 
training procedure described in (Tesauro, 1989). These networks were also tested 
in game play against Gammontool. 

Given the complexity of the task, size of input space and length of typical sequences, 
it seems remarkable that the TO nets can learn on their own to play at a level 
substantially better than Gammontool. Perhaps even more remarkable is that the 
TO nets surpass the EP nets trained on a massive human expert data base: the 
best TO net won 66.2% against Gammontool, whereas the best EP net could only 
manage 59.4%. This was confirmed in a head-to-head test in which the best TO 
net played 10,000 games against the best EP net. The result was 55% to 45% 
in favor of the TO net. This confirms that the Gammontool benchmark gives a 
reasonably accurate measure of relative game-playing strength, and that the TO 
net really is better than the EP net. In fact, the TO net with no features appears 
to be as good as Neurogammon 1.0, backgammon champion of the 1989 Computer 
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Figure 1: Plot of game performance against Gammontool vs. number of hidden 
units for networks trained using TD learning from self-play (TD), and supervised 
training on human expert preferences (EP). Each data point represents the result 
of a 10,000 game test, and should be accurate to within one percentage point. 

Olympiad, which does have features, and which wins 65% against Gammontool. A 
10,000 game test of the best TD net against Neurogammon 1.0 yielded statistical 
equality: 50% for the TD net and 50% for N eurogammon. 

Ii is also of interest to examine the weights learned by the TD nets, shown in fig­
ure 2. One can see a great deal of spatially organized structure in the pattern of 
weights, and some of this structure can be interpreted as useful features by a knowl­
edgable backgammon player. For example, the first hidden unit in figure 2 appears 
to be a race-oriented feature detector, while the second hidden unit appears to be 
an attack-oriented feature detector. The TD net has apparently solved the long­
standing "feature discovery" problem, which was recently stated in (Frey, 1986) as 
follows: "Samuel was disappointed in his inability to develop a mechanical strategy 
for defining features. He thought that true machine learning should include the 
discovery and definition of features. Unfortunately, no one has found a practical 
way to do this even though more than two and a half decades have passed." 

The training times needed to reach the levels of performance shown in figure 1 were 
on the order of 50,000 training games for the networks with 0 and 10 hidden units, 
100,000 games for the 20-hidden unit net, and 200,000 games for the 40-hidden 
unit net. Since the number of training games appears to scale roughly linearly with 
the number of weights in the network, and the CPU simulation time per game on 
a serial computer also scales linearly with the number of weights, the total CPU 
time thus scales quadratically with the number of weights: on an IBM RS/6000 
workstation, the smallest network was trained in several hours, while the largest 
net required two weeks of simulation time. 

In qualitative terms, the TD nets have developed a style of play emphasizing run-
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Figure 2: Weights from the input units to two hidden units in the best TO net. 
Black squares represent negative weightsi white squares represent positive weightsi 
size indicates magnitude of weights. Rows represent spatial locations 1-24, top row 
represents no. of barmen, men off, and side to move. Columns represent number 
of Black and White men as indicated. The first hidden unit has two noteworthy 
features: a linearly increasing pattern of negative weights for Black blots and Black 
points, and a negative weighting of White men off and a positive weighting of Black 
men off. These contribute to an estimate of Black's probability of winning based 
on his racing lead. The second hidden unit has the following noteworthy features: 
strong positive weights for Black home board points, strong positive weights for 
White men on bar, positive weights for White blots, and negative weights for White 
points in Black's home board. These factors all contribute to the probability of a 
successful Black attacking strategy. 

ning and tactical play, whereas the EP nets favor more quiescent positional play 
emphasizing blocking rather than racing. This is more in line with human expert 
play, but it often leads to complex prime vs. prime and back-game situations that 
are hard for the network to evaluate properly. This suggests one possible advan­
tage of the TO approach over the EP approach: by imitating an expert teacher, 
the learner may get itself into situations that it can't handle. With the alternative 
approach of learning from experience, the learner may not reproduce the expert 
strategies, but at least it will learn to handle whatever situations are brought about 
by its own strategy. 

It's also interesting that TO net plays well in early phases of play, whereas its play 
becomes worse in the late phases of the game. This is contrary to the intuitive notion 
that states far from the end of the sequence should be harder to learn than states 
near the end. Apparently the inductive bias due to the representation scheme and 
network architecture is more important than temporal distance to the final outcome. 
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3 TD LEARNING WITH BUILT-IN FEATURES 

We have seen that TD networks with no built-in knowledge are able to reach com­
puter championship levels of performance for this particular application. It is then 
natural to wonder whether even greater levels of performance might be obtained 
by adding hand-crafted features to the input representation. In a separate series of 
experiments, TD nets containing all of Neurogammon's features were trained from 
self-playas described in the previous section. Once again it was found that the per­
formance improved monotonically by adding more hidden units to the network, and 
training for longer training times. The best performance was obtained with a net­
work containing 80 hidden units and over 25,000 weights. This network was trained 
for over 300,000 training games, taking over a month of CPU time on an RS/6000 
workstation. The resulting level of performance was 73% against Gammontool and 
nearly 60% against N eurogammon. This is very close to a human expert level of 
performance, and is the strongest program ever seen by this author. 

The level of play of this network was also tested in an all-day match against two­
time World Champion Bill Robertie, one of the world's best backgammon players. 
At the end of the match, a total of 31 games had been played, of which Robertie won 
18 and the TD net 13. This showed that the TD net was capable of a respectable 
showing against world-class human play. In fact, Robertie thinks that the network's 
level of play is equal to the average good human tournament player. 

It's interesting to speculate about how far this approach can be carried. Further 
substantial improvements might be obtained by training much larger networks on 
a supercomputer or special-purpose hardware. On such a machine one could also 
search beyond one ply, and there is some evidence that small-to-moderate improve­
ments could be obtained by running the network in two-ply search mode. Finally, 
the features in Berliner's BKG program (Berliner, 1980) or in some of the top com­
mercial programs are probably more sophisticated than Neurogammon's relatively 
simple features, and hence might give better performance. The combination of all 
three improvements (bigger nets, two-ply search, better features) could conceivably 
result in a network capable of playing at world-class level. 

4 CONCLUSIONS 

The experiments in this paper were designed to test whether TD(.\) could be suc­
cessfully applied to complex, stochastic, nonlinear, real-world prediction and control 
problems. This cannot be addressed within current theory because it cannot answer 
such basic questions as whether the algorithm converges or how it would scale. 

Given the lack of any theoretical guarantees, the results of these experiments are 
ve~y encouraging. Empirically the algorithm always converges to at least a local 
minimum, and the quality of solution generally improves with increasing network 
size. Furthermore, the scaling of training time with the length of input sequences, 
and with the size and complexity of the task, does not appear to be a serious prob­
lem. This was ascertained through studies of simplified endgame situations, which 
took about as many training games to learn as the full-game situation (Tesauro, 
1992). Finally, the network's move selection ability is better than one would ex­
pect based on its prediction accuracy. The absolute prediction accuracy is only at 
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the 10% level, whereas the difference in expected outcome between optimal and 
non-optimal moves is usually at the level of 1 % or less. 

The most encouraging finding, however, is a clear demonstration that TO nets with 
zero built-in knowledge can outperform identical networks trained on a massive 
data base of expert examples. It would be nice to understand exactly how this is 
possible. The ability of TO nets to discover features on their own may also be of 
some general importance in computer games research, and thus worthy of further 
analysis. 

Beyond this particular application area, however, the larger and more important 
issue is whether learning from experience can be useful and practical for more 
general complex problems. The quality of results obtained in this study indicates 
that the approach may work well in practice. There may also be some intrinsic 
advantages over supervised training on a fixed data set. At the very least, for tasks 
in which the exemplars are hand-labeled by humans, it eliminates the laborious 
and time-consuming process of labeling the data. Furthermore, the learning system 
would not be fundamentally limited by the quantity of labeled data, or by errors 
in the labeling process. Finally, preserving the intrinsic temporal nature of the 
task, and informing the system of the consequences of its actions, may convey 
important information about the task which is not necessarily contained in the 
labeled exemplars. More theoretical and empirical work will be needed to establish 
the relative advantages and disadvantages of the two approachesi this could result 
in the development of hybrid algorithms combining the best of both approaches. 

References 

H. Berliner, "Computer backgammon." Sci. Am. 243:1, 64-72 (1980). 

P. Dayan, "Temporal differences: TO{>') for general >.." Machine Learning, in press 
(1992). 

P. W. Frey, "Algorithmic strategies for improving the performance of game playing 
programs." In: O. Farmer et a1. (Eds.), Evolution, Game6 and Learning. Amster­
dam: North Holland (1986). 

A. Samuel, "Some studies in machine learning using the game of checkers." IBM 
J. of Re6earch and Development 3, 210-229 (1959). 

R. S. Sutton, "Learning to predict by the methods of temporal differences. " Machine 
Learning 3, 9-44 (1988). 

G. Tesauro and T. J. Sejnowski, "A parallel network that learns to play backgam­
mon." Artificial Intelligence 39, 357-390 (1989). 

G. Tesauro, "Connectionist learning of expert preferences by comparison training." 
In D. Touretzky (Ed.), Advance6 in Neural Information Proce66ing 1, 99-106 (1989). 

G. Tesauro, "Neurogammon: a neural network backgammon program." IJCNN 
Proceeding6 III, 33-39 (1990). 

G. Tesauro, "Practical issues in temporal difference learning." Machine Learning, 
in press (1992). 


