
ARTIFICIAL INTELLIGENCE 85

A Generalised Quiescence Search
Algorithm*

Don F. Beal
D e p a r t m e n t o f C o m p u t e r Sc ience , Q u e e n M a r y Col lege ,

L o n d o n Univers i ty , Mi l e E n d R o a d , L o n d o n , E n g l a n d

E1 4 N S , U K

ABSTRACT

This paper describes how the concept of a null move may be used to define a generalised quiescence
search applicable to any minimax problem. Experimental results in the domain of chess tactics show
major gains in cost effectiveness over full-width searches, and it is suggested that null-move
quiescence may be almost as widely useful as the alpha-beta mechanism. The essence of the
mechanism is that null moves give rise to bounds on position values which are more reliable than
evaluations. When opposing bounds touch, they create a single value which is more reliable than
ordinary evaluations, and the search is terminated at that point. These terminations are prior to any
alpha-beta cutoffs, and can lead to self-terminating searches.

I. The Idea of the Null Move

The null move means changing who is to move without making any other
change to the game state. Some games, such as Go, allow the null move as a
legal move; others such as chess, do not. In the overwhelming majori ty of
positions in either game, the null move would be a poor move, because there
would be moves that did something beneficial for the side to play. This is true
even if the side to play is losing, because even then the losing side is expected
to be trying to minimise the loss, or delay it. Situations where the best possible
outcome is obtained by the null move are really very rare. In chess they occur
sometimes in the late stages of the game and, although they comprise a
negligible fraction of positions encountered in practice, they have a special
name, z u g z w a n g . In a zugzwang position, every piece is either blocked or "t ied
down" by some essential defensive function and every move loses hold of
something. In Go, the null move is never useful during the main part of the
game, but as the game reaches the very end, both players are approaching

* An earlier version of this paper appeared as "Experiments with the Null Move," in Advances
in Computer Chess 5 (Elsevier Science Publishers, Amsterdam, 1989).

Artificial Intelligence 43 (1990) 85-98
0004-3702/90/$3.50 © 1990, Elsevier Science Publishers B.V. (North-Holland)

86 D.F. BEAL

situations where they would lose rather than gain by playing another stone.
When a player thinks that there is no further gain for him, that player will
"pass" (= null move) and when both players pass consecutively, the game is
over.

Since the null move is so rarely a good move (and not even legal in chess),
why should it be included in minimax lookahead?

The answer lies in the structural properties of the computation that minimax
lookahead is making, and has little to do with whether the null move is legal or
not. It is also independent of the alpha-beta algorithm used to speed up
minimax.

2. What Computation Is Minimax Making?

Since CHESS 4.5 (Slate and Atkin [18]), most chess programs, particularly the
top performing ones, have used a search regime roughly characterized by:
full-width search to a fixed depth, followed by a quiescence search. A typical
quiescence search would be: captures and checks at ply 1, captures only after
that.

Although the search is described as full-width, it is taken for granted that
alpha-beta will be used. Essentially, the description above defines a tree to be
searched, within which an alpha-beta search will look at as many moves as
necessary. It is well-known that an alpha-beta search will give the same result
as the vastly less efficient look-at-all-moves minimax.

The computation performed at each move is that of choosing a best move
based on the tree to be minimaxed (a subset of the complete game tree), and
the evaluation function values at all the tree's endpoints. The factor being
singled out for attention here is the tree to be searched, i.e., its shape and size.

Clearly, CHESS 4.5-style programs perform a different computation if the
depth changes, or if changes are made in the rules governing which moves
comprise the main search or quiescence trees. The key questions would be "Is
the computation any better?" and "How long does it take now?". In chess,
except for certain relatively simple endgames, we have never been interested in
any specific computation for move choice, but in getting "value for money,"
that is, quality of move choice for time spent.

The points of the last paragraph are stressed because, unlike alpha-beta,
which gives dramatically reduced computation times for the same computation,
the null-move algorithms to be described produce a dramatic reduction in
computation time, but on a different computation. This makes it harder to
judge the results.

In any case, we reached the most important question of all: "What shape
and size should the search tree be or, in other words, which moves should be
considered for searching?"

A GENERALISED QUIESCENCE SEARCH 87

Note that alpha-beta should not be mentioned in the answer. Although
alpha-beta indicates moves not worth searching, the context is different. Here
the question is being asked of the tree within which alpha-beta is to operate.

The question is, of course, very old, perhaps the oldest in the 40-year history
of computer chess. It is the question of selective search.

3. Attempts at Selective Search

Shannon's legendary paper of 1950 [17], "Programming a Computer to Play
Chess," described how minimax search should be of variable depth, only
stopping at quiescent positions, and rejecting some moves at interior nodes of
the tree. He called such strategies type-B, and suggested a function similar in
spirit to CHESS 4.5-style quiescence search rules for stopping, but didn't suggest
an actual function for rejecting moves at higher nodes.

Almost all the early chess programmers did indeed try to restrict the search
to a subtree of moves that include "important" moves and exclude "irrelevant"
moves. The Bernstein program of around 1957 [8], perhaps the most complete
and effective of the very early chess programs, limited the search tree to the
"best 7" at every node, using a sequence of plausible move generators to
produce the "best 7." Ten years later, the Greenblatt program [10] became the
best program of its day using carefully chosen quiescence rules aiming at
tactical solidity.

Then, in 1973, CHESS 4.0 (later transmuted into CHESS 4.5 [18]) made the
successful exchange of speed and efficiency for selection, and set the pattern
for the next fifteen years. There was however, a vitally important qualification
to the new pattern of do-it-all-to-fixed-depth-and-do-it-fast. Namely, the
quiescence search. The endpoints of the fixed depth search were not places to
apply the evaluation function, but places to start operating a simple and
successful selective search, namely, the capture tree (augmented by one or two
plies of checks if available). (There were also, of course, the vital mechanisms
of iterative deepening, transposition tables, alpha-beta by then taken for
granted, and many ingenious programming techniques.)

There have been much more radical attempts to find better selective search
mechanisms. Harris (1974, [11]) proposed a bandwidth search centered on
promising lines of play. The authors of the Russian program KAISSA (Adelson-
Velskiy, Arlazarov and Donskoy, 1975, [1]), mention a variety of heuristics,
including allowing the play of a null move when ahead in material. Berliner
(1979, [7]) proposed the B* algorithm which uses separate optimistic and
pessimistic estimates of position value at each node. Palay (1983, [15])
extended and developed B* to use probability distributions rather than op-
timistic-pessimistic ranges. Very recently, McAllester has described an elegant
method, called conspiracy numbers, based on counting critical positions (1986,
[14]).

88 D.F. BEAL

In addition, there have been many attempts to use extensive domain-specific
knowledge to create effective selective searches. Two major attempts that
focussed on tactical play were Berliner's CAPS-II [6] and Wilkins' PARADISE
[20].

However, none of these methods has proved effective enough to become
widespread.

4. Quiescence Search

Quiescence searches are, of course, selective searches. They derive from the
idea of expanding the search just enough, and only just enough, to avoid
evaluating a position where tactical disruption is in progress.

Chess players can identify many types of "tactical disruption." The simplest
notion, which leads to the idea of a capture tree, is to say that tactical
disruption is present if an immediate capture is available. More sophisticated
definitions would take account of checks, forks, trapped pieces, etc., and lead
to more elaborate (and larger[) quiescence searches.

It is tempting, but not quite accurate, to think that a quiescence search could
be defined by giving the rules for selecting the moves that make up the
quiescence search tree. (If the rules produced no moves at a particular position
the position would be a terminal node of the tree. Alpha-beta would be used
within the tree.) This description sounds complete if rather condensed, but it is
not quite right. To see what is missing, consider the position of Fig. 1.

The position in Fig. 1 is not terminal. White has a capture available.
However, it is a disadvantageous capture and White ends up losing two pawns
worth of material. This value (-2 pawns) is the value returned by a "quies-
cence search" according to the definition just given.

i
m

W
W

wl
i m

m B
II

m M

X°
m

i white
to play

Fig. 1. Position illustrating capture quiescence.

Capture tree

I NxP

BxN

A GENERALISED QUIESCENCE SEARCH 89

Clearly, this is wrong. White need not enter into the capture. The correct
definition of a quiescence capture tree includes: "at each node, the side to play
is given the option of choosing the best capture o r taking the static evaluation."
White has the option to "stand pat ."

This option to "stand pat" can equally well be viewed as an option to choose
the evaluation after a null move, rather than the static evaluation now, since
the material doesn't change with a null move. Although involving the null
move seems an unnecessary complication at first sight, regarding the value as
arising from playing the null move enables capture search to be seen as merely
one special case of a general algorithm.

5. Game Independence

An interesting property of the concept of a capture tree is that definitions can
be given in a game-independent way. By game-independent is meant that all
game-specific knowledge is packaged in an evaluation function (in this case
statically counting up the value of pieces on the board), and then game-
independent rules define the search regime. An earlier paper [2] reported that
the game-independent rules for "consistency search" produced a capture tree
from the "material balance" evaluation in chess.

t s l s S S ~
: s S ! s t

: s " s

i l l / ! ,

: i / :7 i : !

• ' 6 i / ~ , ,
. : : * : t I : : illr Q! /' ,'

L

S
/ i

/

" i
e"

/
/ s /

I

: /

Dark c i rc les ere te rminal nodes o f qu iescence searches.

t
t I

6

T h e second-order quiesceaace search tree is h ighl ighted by larger nodes.

Fig. 2. Illustrative shape of search tree for second-order null-move quiescence.

9 0 D . F . B E A L

However, there is another game-independent search regime, null-move
quiescence search, that also produces a capture tree when given the material
balance evaluation. Null-move quiescence search is the subject of this paper.

Null-move quiescence becomes particularly interesting when it is "boot-
s trapped." Because it can be applied to any evaluation function, it can be
applied as a second-order search to the values obtained by the first-order
quiescence searches. The idea here is that just as "counting material" can be
packaged in a black box and called an evaluation function, so a result obtained
by a null-move search can be packaged in a black box and called an evaluation
function. Thus, the rules can be applied a second time at a higher level. Figure
2 illustrates the effect diagrammatically.

Applying this to material balance in chess, the second-level quiescence
search, although it still contains no chess knowledge beyond counting up
material, selects moves such as checks, moves out of check, attacks on pieces,
defences, blocks, and other types of sharp tactical moves that chess players
concentrate on. Perhaps the surprising thing is that the branching factor of the
second-level tree is only an average of about four (compared to an average of
about 35 legal moves), and the success rate in finding combinations is very high
indeed. (It does, however, have some distinctive weaknesses.)

6. The Null-Move Quiescence Search

It is easiest to describe as a program. Figure 3 shows a simplified version,
called QUIESCE.

QUIESCE is a particularly simple version to illustrate the essential mechan-
ism. bestv is initialised to a null-move value, rather than to the lower end of the
alpha-beta range. Notice that all evaluations take place after the null move.
QUIESCE does not have a depth limit. It can however still terminate. Whenever
the null-move value is greater than or equal to the upper end of the alpha-beta
range, the search will stop at that position. Only the null move will have been
explored, and that is evaluated directly. QUIESCE can be, and often is, a
self-limiting, self-terminating search.

Also note that the function evaluate could itself be a search. Thus to obtain a
second-order null-move quiescence search, QUIESCE1 would be defined with

QUIESCE(Iower, upper) integer lower, upper;
{ integer bestv;

makenuU; bestv ~ - evaluate(-upper,-lower); unmakenull;
foreach move m do
{ if(bestv >= upper) return(bestv);

make(m); v <-- - QUIESCE(-upper, -bestv); unmake(m);
if(v > bestv) bestv <-- v;

}
return(bestv);

Fig. 3. Simplest version of null-move quiescence search.

A GENERALISED QUIESCENCE SEARCH 91

evaluate = material balance, and QUIESCE2 would be defined with evaluate =

QUIESCE1.

The reader may have already noticed that QUIESCE, when using material
balance as the evaluation function, will search all (or potentially all) moves at
nonterminal nodes--not merely capture moves--despite the earlier claim that
this quiescence mechanism would produce a capture tree. What will happen is
that noncaptures will indeed be searched by QUIESCE, but will always termi-
nate with a cutoff after the null move at the next ply. This single ply of
search-and-reject behaviour for all noncaptures creates a 1-ply "fringe" around
a capture tree skeleton. The fringe could be optimised away in an implementa-
tion specialised to a capture search. The essential requirement for optimising
away the "fringe" for QUIESCE is that an incremental change to the evaluation
function can be computed without actually making the move. Any evaluation
function which meets this requirement could be similarly optimised.

A more practical version of null-move quiescence would use iterative
deepening, transposition tables, ordering heuristics, etc., as used with full-
width minimax searches.

The question of a depth limit raises more subtle issues that it might seem. If
the search is truncated at a depth limit, the result should be not a single value,
but a triple. This is explained later.

7. Performance of the Generalised Null-Move Quiescence
Search

Null-move quiescence is a general mechanism, capable of operating with any
evaluation function. However, it is particularly effective at solving tactical
problems in chess. First-order quiescence on material scores (capture trees) is
well-known to be cost-effective. The performance of second-order quiescence
on material was tested on the 300 tactical positions in the Reinfeld book, Win

at Chess, [16]. This test set has been used on other chess programs and
algorithms.

One modification was made to the definition of second-order quiescence.
That was to enhance the value returned from the first-order quiescence (i.e.,
the result from a capture tree) with the ability to see checkmates. This is an ad
hoc modification, but is a cost-effective compromise between putting the
knowledge about checkmate in with the material balance evaluation (where it
might be thought to belong, but where it is very costly in program time) and
leaving it out altogether.

With this modification, material double-quiescence solved 276 of the 300
positions. Only positions where the right move was found for the right reason,
or the program demonstrated a flaw in Reinfeld's published solution, were
counted as correct. This result can be compared with BELLE (Thompson [19]),
which was reported by Palay [15] to only solve 273 within a 3-minute per
position limit.

92 D.F. BEAL

The significance of this result is not so much that the score happens to be
higher than 1983 BELLE, but the "value for money" that it represents. The
score itself is good considering the paucity of knowledge used, but the time
taken is the real result. The results below show that BELLE's score can be
obtained for approximately one-fifteenth of the effort.

The actual execution times (in z8000 microcomputer seconds) are given in
Table 1. "F" entries indicate that no solution was found because the material-
only evaluation function has insufficient knowledge to solve the problem.
These may be compared with BELLE times by dividing by 100, as BELLE looks
at approximately 100 times as many positions per second (about 160,000 versus
about 1500 for the z8000 program). Of the solved positions, the longest took 16
seconds of BELLE-equivalent time. 273 positions (BELLE'S score) can be
obtained with a time limit of 12 BELLE-equivalent seconds per position, thus
consuming only a fifteenth of BELLE's effort.

The comparison is on the basis of giving each program the full 180 (or 12)
seconds on every position. Both programs need far less on most positions, as

Table 1
Times (seconds on z8000) to solution for the 300 Reinteld positions. Positions 92 (= number 12 in
test set 5), 157, 210, 249,264 and 296 showed Reinfeld's solution to be incorrect and were scored
as "correct by demonstrating flaw." Positions 116, 129, 130, 149,204, and 223 produced Reinfeld's
solution move but with lesser gain shown. These were also scored as "correct by demonstrating
flaw"

Test sets (called quizzes in Reinfeld)

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3 42 F 1 7 F 2 57 31 I 1 29 213 124 35
2 F F 2 29 20 1 5 4 19 7 1 53 8 1629 4
3 70 7 1 6 130 11 4 6 F 21 6 223 F 54 28
4 3 1 1 3 1 15 66 14 8 1 1205 17 32 70 315
5 1 1 1 23 1 30 18 22 15 153 91 2 789 1151 890
6 3 1 F 48 F 21 1 F 21 15 5 47 1 313 2
7 1 1 1 2 F 1 12 25 42 18 637 3 F 5 46
8 1 3 32 2 61 29 8 28 9 3 35 32 F 9 24
9 17 2 62 29 3 5 18 10 16 5 18 F 270 482 14

10 40 7 3 3 17 1 66 8 3 F 73 F 51 151 23
11 17 301 9 615 90 63 22 15 212 1 18 136 F 71 500
12 1 8 4 2 45 3 3 1 2 5 24 78 177 24 28
13 4 4 3 7 F 12 52 17 3 203 F 46 7 85 53
14 8 2 1 1 2 23 8 1 4 62 43 173 62 9 20
15 1 7 10 21 1 11 6 F 4 29 47 91 37 40 3
16 4 1 5 258 598 33 5 1 37 318 26 16 142 30 162
17 17 1 2 10 2 1 60 244 5 1 172 1241 45 32 F
18 34 1 27 43 7 32 11 3 192 20 5 35 20 47 5
19 4 1 6 17 2 10 40 5 4 10 2 F F 29 F
20 1 1 1 107 F 37 5 1 730 32 776 649 114 886 23

A GENERALISED QUIESCENCE SEARCH 93

Table 1 shows for the z8000 program (remember that 1200 z8000 seconds are
needed for 12 BELLE-equivalent seconds). 235 positions were solved in less
than 1 second of BELLE-equivalent time although, as times to solution are not
given in [15], this cannot be compared with BELLE. The deepest search needed
was for position 96 (= number 16 in test set 5), which went to 16 ply plus
captures.

Apart from the see-checkmates enhancement, the experimental implementa-
tion differed from QUIESCE only in that special-purpose capture tree code was
used for the first-order search, and that the second-order QUIESCE used
iterative deepening with move ordering and already-calculated values obtained
from the previous iteration. The program was written in assembly language,
derived from a tournament chess program.

8. Comparisons with Other Programs

As a comparison with knowledge-based programs, PARADISE (Wilkins [20])
scored 89 out of the first 100 (compared to 92 for QUIESCE), and took about
ten times as long. This is not really a meaningful comparison though, and
Wilkins' work was actually a tour de force in the difficult research area of
creating programs that use knowledge instead of search.

From private discussions, it seems that a few other programs have used the
null move as an additional move in ordinary minimax. The idea is that in
positions where the side to play is significantly ahead, the null move, although
not the best, will nevertheless be enough to produce a cutoff, and, being a
quieter move, may have a smaller subtree than the best move. This was the use
mentioned in the KAISSA paper [1]. This technique may have some benefit in
full-width searches, but it involves doing a normal depth search below the null
move, rather than direct evaluation as in QUIESCE. Closer to QUIESCE was the
program MERLIN (Kaindl [12]), which used the null move to find threats.

The work that is closest in spirit to QUIESCE is the B* algorithm of Berliner
[7], and the experiments performed by Palay [15] on probabilistic modifications
of B*. In B*, it is necessary to obtain upper and lower bounds for all positions
in the tree. Berliner's paper on B* suggested that the bounds would come from
evaluation knowledge. Palay experimented with a method which obtained
bounds from a shallow (2-ply) search from the current position. The 2-ply
search made two moves in succession for one side or the other, and thus
provided biased results which were taken as bounds for each side. The main
search would then proceed deeper from the current position, within the bounds
found from the 2-ply search.

Conceptually, this has something in common with QUIESCE although Palay's
algorithm is considerably more complicated. With an effort limit of 4 hours of
VAX 11/780 time per position Palay's program solved 245 of the Reinfeld
problems. (4 hours of VAX 11/780 time is very roughly equivalent to 3 minutes of
BELLE time.)

94 D.F. BEAL

9. Reasons Why Null-Move Quiescence Is Effective

Null-move quiescence takes a given evaluation function, applies a search
regime to it, and returns a value f rom the search which is more reliable than
the given evaluation function. As can be seen f rom an inspection of QUIESCE,
the value returned always originates as a null-move value.

Why should null-move values be more reliable than ordinary values?
The answer is, "They a ren ' t . " It is their role as bounds that is more reliable.

That is, the s tatement " the value at position P is at least X," where X =
evaluate(nullmove(P)), is much more reliable than the statement " the value at
P is X , " or " the value at P is evaluate(P)." In general, as the search proceeds,
tighter and tighter bounds can be acquired, until a lower bound meets an upper
bound. At this point, the search closes off with a single reliable value.

Thus the value that QUIESCE returns is not " jus t" a null-move value, but is
the result of two "oppos ing" null-move values touching. Figure 4 illustrates the
smallest possible tree.

More typically, the top-level null-move value will not establish a closing
bound. In this case, the depth-1 searches will not all consist of a single
null-move evaluation, but some will expand to another ply of search.

A simple model of minimax [3] showed that the benefit of minimax
lookahead in random trees conforming to an overall clustering tendency
increased with the clustering, and that the degree of clustering in a chess
endgame (KPK) was amply sufficient for beneficial (rather than pathological)
lookahead behavior.

The concepts of that model can be used to consider what the benefits of
null-move quiescence lookahead might be. The result, not presented in detail
here, is that if the null-move value was assumed to take values unrelated to
other local values, then the error propagat ion propert ies were very similar to

result = 0

0 ," >0 ," >0 ," >0
s j s

s • s
• r s

• s s
~" s s

• J •

0 ." 0 ." 0 ,"

O O O
0 0 0

Fig. 4. Smallest possible tree for OUIESCE. Negamax convention: numbers below node are from
the point of view of player making move below; numbers above are from the point of view of

players making move above.

A GENERALISED QUIESCENCE SEARCH 95

full-width lookahead. This would mean that the expected reliability of QUIESCE
would be low, since the null-move values are raw evaluations, not deep
searches, and can occur at any depth.

Perhaps it isn't surprising though, that null-move quiescence would be
useless if the null-move value was unrelated to other local values.

If instead a positive assumption is made about the properties of the null
move, namely, that it is highly unlikely for a null-move value to be higher than
the best of the other moves, then the error-reduction factor changes from
approximately

b
1 - k ~ / k (k - f + kf)

to approximately zero. In other words that, with that kind of model, a
null-move quiescence search removes all first-order error terms.

Of course, this all depends on the assumption that the null-move value is not
higher than the best of the real moves. This has to be assumed separately both
for true game values and the heuristic values being searched. The assumption
about true values is an assumption that this position is not zugzwang. The
assumption about the heuristic values amounts to an additional assumption that
the evaluation function is really measuring something related to the game.

Both these assumptions seem to be reasonable in practice, and their truthful-
ness could perhaps be measured for evaluation functions in chess, although this
has not been attempted.

10. Depth-Limited Versions of QUIESCE, Fat Values and
Nested Minimax

As the search proceeds, null-move values will narrow the range of possible
values. These values will, of course, be passed around the tree for use by the
alpha-beta mechanism. However, it should be noted that the bounds arising
from null moves are not alpha-beta "bounds." Null-move values produce a
bound on the actual value of the current position. Alpha-beta "bounds" are a
limitation on the range of interest we currently have in the actual value.

This distinction becomes important if the search is terminated prematurely
(that is, by a depth limit). In this case null-move bounds can be returned as
part of the top-level result (whereas it would not make sense to return
alpha-beta "bounds" as results). In general, the result will be a range (more
picturesquely called a "fat value") which is reliable plus an unreliable value
within it. At the terminal depth, only an unreliable point value is available, but
as values are backed up, they can be combined with null-move values. The
result of this combination is a reliable fat value with an unreliable point value
located within it. The "(reliable range) + unreliable value inside" pattern gives
rise to the concept of "nested evaluations" or "nested minimax" (Beal [4]).

9 6 D.F. B E A L

QUIESCE-D(lower, upper, d) integer lower, upper, d;
{ integer I~stv;

if(d = 0) { v <-- evaluate(lower,upl~r); return(-INF,v,INF); }
LOWER +-- - INF; UPPER ~-- - INF;
makenuU; Imstv <-- - evaluate(-upper,-lower); unmakenull;
if0aestv > lower) LOWER ~- bestv;
foreagh move m do
{ if(bestv >= upper) return(LOWER,bestv,INF);

make(m); Lm,vm,Um <-- QUIESCE-D(-upper, -beatv, d-l); unmake(m);
L~-- -Urn; v~ - - v m ; U~- - L m ;
if(L > LOWER) LOWER <-- L;
if(v > bestv) bestv t--- v;
if(U > UPPER) UPPER ~-- U;

1
return(LOWER,Imstv,UPPER);

Fig. 5. D e p t h - l i m i t e d vers ion of nu l l -move qu iescence search.

Figure 5 shows QUIESCE-D, a depth-limited version of QUIESCE. It handles
two distinct reliability levels and therefore produces evaluations with one level
of nesting. Two applications of QUIESCE-D, in the manner of Fig. 2, would
produce three reliability levels, and hence an evaluation with two levels of
nesting. Nested evaluations would also arise from a minimax search that had
recourse to a special-purpose evaluation that only became applicable occa-
sionally.

Multiple applications of QUIESCE, or a variety of special-purpose evaluation
mechanisms, could in principle produce evaluations with any number of levels
of nesting. An example of the procedure for minimaxing with doubly nested
evaluations is given in "Selective Search without Tears" (Beal [5]).

The QUIESCE of Fig. 3 could, of course, be depth-limited without attempting
to distinguish reliable values which arose from null-move termination from
unreliable values obtained at the depth limit. This amounts to throwing away
the fat value part of the result, and although the resulting algorithm is simple
and more familiar, it loses valuable information. For example, an iterative
search should be stopped when a definite result is obtained. Also, incomplete
searches can yield valuable fat value information. Figure 6 shows an example
where the final value is not known, but the move choice is already definite.
Another interesting situation arises when the known values offer a choice
between a safe move, [0, 0], and an uncertain move that may bring gain or loss,
[-2 , 3], as in Fig. 7.

[0 , 1 1 [- 9 9 , 0 1 [- 9 9 , 0 1 [- 2 , 3 1 [0 , 0 1 [- 1 , 0 1

Fig. 6. Fig. 7.

A GENERALISED QUIESCENCE SEARCH 97

II. Conclusions and Comparison with Other Search
Techniques

A good result on tactical problems in chess is relatively easy to achieve. There
may well be positions and domains in which QUIESCE is not very successful.
However , its simplicity and generality, and cost effectiveness in chess tactics
suggest that it may be a better algorithm to start from than full-width searching
(which has its own disadvantages). Its generality means that it could be applied
to any minimax problem, thus making it a technique as widely applicable as
alpha-beta. If it should turn out that material balance in chess was typical,
rather than exceptional, then null-move quiescence would be as important as
alpha-beta to cost-effective searches.

Improvements and extensions to QUIESCE can include not only iterative
deepening, transposition tables, and move-ordering heuristics, which are cur-
rently standard technology in full-width searches, but also additional interior
evaluations to test for zugzwang, additional interior evaluations known to be of
higher reliability in special situations, and mechanisms controlling the effort
spent at different levels of the quiescence hierarchy.

The logic of the null move can be related to two other search algorithms. If
the null move has a particular value, it is probably the case that several moves
have at least that value. If one cares to assume any particular average number,
say 6, then a closed-off null-move search is equivalent to a locked value of
degree 6. Locked-value searches [3] are searches which continue until they
strike small local configurations where more than N (the lock number) have to
change to change the value of the configuration. More flexibly, each null-move
bound can be regarded as preparing one side of an eventual double-sided lock
on a deeper position.

McAllester 's conspiracy numbers [14] have some affinity with the earlier
concept of locked values, but are more general. Conspiracy numbers allow
incremental accumulation of "locks" over the whole tree, and use global
information over the whole tree to decide tree growth. Nevertheless, just as
with the locked values, the null move can be regarded as providing (cheaply)
the equivalent of a conspiracy number of 6 (or whatever). This idea may
improve the economics of conspiracy number algorithms.

ACKNOWLEDGEMENT

I am indebted to Hans Berliner for many helpful comments on an earlier version of this paper.

REFERENCES

1. G.M. Adelson-Velskiy, V.L. Arlazarov and M.V. Donskoy, Some methods of controlling the
tree search in chess programs, Artificial Intelligence 6 (1975) 361-371.

2. D.F. Beal, An analysis of minimax, in M.R.B. Clarke, ed., Advances in Computer Chess 2
(Pergamon, Oxford, 1980) 103-109.

98 D.F. BEAL

3. D.F. Beal, Benefits of minimax, in: M.R.B. Clarke, ed., Advances in Computer Chess 3
(Pergamon, Oxford, 1982) 17-24.

4. D.F. Beal, Mixing heuristic and perfect evaluations: Nested minimax, 1CCA J. 7 (1984) 10-15.
5. D.F. Beal, Selective search without tears, ICCA J. 9 (1986) 76-80.
6. H.J. Berliner, Chess as problem solving: The development of a tactics analyzer, Ph.D. Thesis,

Computer Science Department, Carnegie-Mellon University, Pittsburgh, PA (1974).
7. H.J. Berliner, The B* tree search algorithm: A best-first proof procedure, Artificial Intellig-

ence 12 (1979) 23-40.
8. A. Bernstein, et al., A chess-playing program for the IBM 704 computer, in: Proceedings

Western Joint Computer Conference (1958) 157-159.
9. J.J. Gillogly, The technology chess program, Artificial Intelligence 3 (1972) 145-163.

10. R.D. Greenblatt, D.E. Eastlake and S.D. Crocker, The Greenblatt chess program, Fall Joint
Computer Conference 31 (1967) 801-810.

11. L.R. Harris, The heuristic search under conditions of error, Artificial Intelligence 5 (1974)
217-234.

12. H. Kaindl, Searching to variable depth in computer chess, in: Proceedings IJCAI-83,
Karlsruhe, FRG (1983) 760-762.

13. D.E. Knuth and R.W. Moore, An analysis of alpha-beta pruning, Artificial Intelligence 6
(1975) 293-326.

14. D.A. McAllester, A new procedure for growing mini-max trees, Tech. Rept., Artificial
Intelligence Laboratory, MIT, Cambridge, MA (1985).

15. A.J. Palay, Searching with probabilities, Rept. CMU-CS-83-145, Carnegie-Mellon University,
Pittsburgh, PA (1983).

16. F. Reinfeld, Win at Chess (Dover, New York, 1945).
17. C.E. Shannon, Programming a computer to play chess, Philos. Mag. 41 (1950) 256-275.
18. D.J. Slate and L.R. Atkin, CHESS 4.5: The Northwestern University chess program, in: P.W.

Frey, ed., Chess Skill in Man and Machine (Springer, New York, 1977, 2nd ed., 1983) 82-118.
19. K. Thompson and J.H. Condon, Belle chess hardware, in: M.R.B. Clarke, ed., Advances in

Computer Chess 3 (Pergamon, Oxford, 1982).
20. D.E. Wilkins, Using patterns and plans to solve problems and control search, Ph.D. Thesis,

Rept. STAN-CS-79-747, Stanford University, Stanford, CA (1979).

