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ABSTRACT 

A new procedure is presented for  growing rain-max game trees. In large games, such as chess, 
decisions must be based on incomplete search trees. The new tree-growth procedure is based on 
"conspiracy numbers" as a measure o f  the accuracy o f  the root minimax value o f  an incomplete tree. 
Conspiracy numbers measure the number o f  leaf nodes whose value must change in order to change 
the minimax root value by a given amount. Trees are grown in a way that maximizes the conspiracy 
required to change the root value. The trees grown by this procedure are often deep and narrow. 
However, i f  all static values in a game are the same, this new procedure reduces to d-ply search with 
c~-~3 pruning. Unlike B* search, nonuniform growth is achieved without any modification o f  the 
static-board evaluator. 

I. Introduction 

The game playing procedure presented here uses minimax search: the proce- 
dure grows a search tree and computes  minimax values for all non-leaf nodes in 
the tree. A move is then chosen based on these minimax values. However ,  a 
novel technique is used for growing the search tree and the resulting trees are 
shaped in complex and nonuniform ways. The new tree-growth procedure is 
based on a measure of the "accuracy"  of the minimax root values of incom- 
plete search trees. Search trees should be grown so that the minimax root 
values are accurate. 

Consider the family of full d-ply search trees. A full d-ply search tree is one 
which contains the set of all positions which are within d ply of a given root 
position. It is generally agreed that for the game of chess a (d + 1)-ply tree is 
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more likely to have an accurate minimax root value that a d-ply tree; computer  
programs which search (d + 1)-ply trees play bet ter  than programs which 
search d-ply trees. However ,  there is currently no satisfactory theoretical 
analysis of this phenomenon.  In fact Nau [1, 2] has shown that for certain 
pathological games (d + 1)-ply search trees are less accurate than d-ply search 
trees. It is also well known that "flat" d-ply trees do not provide the best 
performance in chess playing programs. All effective modern  programs explore 
capture moves to a greater depth than they explore non-capture moves and 
moves resulting in check are not counted as a ply of search (see Berliner [3]). 
Thus it is clear that the accuracy of the minimax root value of a search tree can 
depend on both the size and the shape of the tree. But is there some general 
way of measuring the accuracy of the mimimax root value of incomplete trees? 

Intuitively a search tree has an accurate minimax root value if that value 
would not change much if the tree were expanded further; a root value is 
unreliable if further search results in a major  change in that value. Thus the 
term "s table"  in perhaps bet ter  than the term "accurate" .  One should grow a 
search tree in such a way that the root value is stable. 

The stability of the root value can be measured in terms of conspiracy 
numbers. A conspiracy number  measures the number  of leaf nodes whose 
value must be changed in order to change the root node's  value by a certain 
amount.  A change in the value of a certain set of leaf nodes is called a 
conspiracy between those leaf nodes. A conspiracy number  measures the size 
of the conspiracy needed to bring about  a certain change in root value; the 
more conspirators needed for a given change the less likely the change. 

In a game of chess each player has many choices. If a certain move turns out 
to be bad for white, then white can usually make some other move and avoid 
the bad position. This ability to avoid bad positions means that many different 
positions must turn out to be bad before a given player can be forced into a 
bad position. Now consider the conspiracy numbers  mentioned above. Since 
each player has many choices many different leaf positions must all conspire to 
be bad before the minimax value of the root position becomes bad. Thus a 
significant change in the root value often requires a conspiracy between a large 
number  of leaf nodes. On the other hand there are certain positions where a 
given player has very little choice. Suppose for example that the person playing 
white can " force"  the person playing black to make a certain series of moves. 
If the position which is reached as a result of these moves turns out to be bad 
for black, then the original position will turn out to be good for white. In 
situations where the black player does not have much choice only a small 
conspiracy between leaf nodes is needed to make the root position good for the 
white player. The tree-growth procedure presented here explores such "for-  
ced" lines more deeply than lines in which both players have a lot of choice. 

Given a particular search tree the conspiracy numbers computed f rom that 
tree can be used to compute a range of likely root values. More specifically 



CONSPIRACY NUMBERS FOR MIN-MAX SEARCH 289 

consider a potential root  value V. We say that V is a likely root value if the 
conspiracy required to convert the actual root value to V is below a certain 
threshold. As the potential values get farther from the current minimax root 
value the conspiracies required to achieve those values get larger. Thus the set 
of likely root  values for a tree T is an interval of the form [Vmi . ,  Vmax]. The 
"accuracy" of the current minimax root value can be judged by computing the 
range [Vmin, Vmax] of likely root values. 

The range of likely root values [V,~in, Vmax] computed from conspiracy 
numbers is quite different from the range [a , /3]  used in a-/3 pruning (see 
Knuth [4]) and the SSS* algorithm (see Stockman [5]). The parameters a and 
/3 provide exact information about the complete d-ply search tree under a given 
node. Using the parameters ot and/3 one can compute the exact minimax root 
value of the complete d-ply tree without actually examining all of the tree. On 
the other  hand the range [Vmin, Vmax] computed from conspiracy numbers does 
not provide exact information about any particular finite search. Instead the 
range [Vmin, Vmax] provides a heuristic measure of the accuracy of the minimax 
root value of any incomplete search tree. Suppose that the entire d-ply search 
tree has been explored. One can compute a range of likely root values for this 
full tree and this range may contain more than one value. The full d-ply search 
tree is not guaranteed to be accurate. 

Trees should be grown in a way that quickly reduces the range of likely root 
values. The tree-growth procedure presented here takes an arbitrary incom- 
plete search tree and decides which leaf node should be expanded next. 
Suppose that the range of likely root values for the tree under consideration is 
[Vmin, Vmax]. To choose a leaf node for expansion one first chooses either Vmi n 
or Vma x as a candidate value to be ruled out. To rule out the value Vma x one 
must ensure that there are strategies which the minimizing player can use to 
avoid Vma x. Similarly, to rule out Vmi n one can expand leaf nodes which are 
involved in strategies that the maximizing player can use to avoid the value 

Vmin  " 

Berliner [7] has proposed a search technique called B* which is also based on 
iterative incremental tree growth. The B* method for tree growth, however, is 
quite different from the method proposed here. Both procedures manipulate 
ranges of possible values at nodes of the tree. However,  B* and conspiracy 
number techniques use different methods for computing the value ranges and 
different methods for selecting the next node to explore. Furthermore,  the 
ranges used in B* are proved correct: the true value is always within the given 
range. The ranges based on conspiracy numbers are heuristic: a node may 
sometimes have a true value outside of the computed range. Finally, conspira- 
cy numbers have an advantage over B* in that conspiracy numbers can be used 
without any modification of the static position evaluator. 

Under  certain conditions conspiracy-based search bears a strong similarity to 
d-ply search with a-/3 pruning. In particular, if all the positions have exactly 
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the same static value, then the conspiracy-based search is essentially the same 
as d-ply search with 0/-/3 pruning. However ,  if the static values are not 
uniform, then the tree grown using the new procedure will be nonuniform: 
different portions of the tree will be explored to different depths. 

For a given bound on computat ional  resources, such as the number  of nodes 
which can be explored or the time allotted the search process, the new 
procedure is capable of growing trees which are much deeper  than the trees 
which are grown using d-ply search with a-/3 pruning. Intuitively the procedure 
gradually rules out "bad"  moves near the root of the tree and thus reduces the 
branching factor at the root position. Unfortunately however there is no proof 
that the conspiracy numbers used in the new procedure provide a good basis 
for selectively growing search trees. Some experiments with random trees, 
however,  indicate that conspiracy-based search is superior to iteratively 
deepened a-/3 search. Ultimately the performance of this procedure must be 
determined by constructing game playing programs.  

2. Conspiracy Numbers 

We are interested in two-person perfect information games. It is assumed that 
each position in such a game is associated with a static value. The two players, 
max and rain, make alternate moves;  max tries to maximize the values while 
min tries to minimize values. 

Definition 2.1. A min-max game is a tree G where each node of the tree is 
associated with a number  called the static value which is either a real number  or 
one of the special values - ~  or +~ .  The root node is defined to be of type 
max; every successor of a max node is of type min and every successor of a min 
node is type max. A node of G with no successor nodes will be called a 
terminal node of G. 

The game of chess forms a min-max game under the definition given above 
(assuming that some appropriate  static-board evaluator is provided).  Note  that 
there is no constraint on static values; the static value of a max node need not 
be the maximum of the static values of its successors. In practice it is 
impossible to search the entire game of chess. For this reason it is assumed 
here that the game under consideration is infinite. Since the minimax procedure 
cannot be directly applied to an infinite game one must consider finite subsets 
of the game G. 

Definition 2.2. Let T be any finite subtree of a min-max game G. A node j of T 
is called a leaf node of T if no successor of j is a member  of T. The finite 
subtree T will be called well-formed if there are no "partially expanded"  nodes, 
i.e. for every non-leaf node j in T all successors of j are also in T. 
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Fig. 1. A simple two-ply tree. 

Conspiracy numbers measure the difficulty of changing the minimax root 
value of a given tree. Consider the simple two-ply tree shown in Fig. 1. The 
nodes of the tree are given single letter names in an essentially random order 
(nodes will be named in the order  in which they are added to the tree). The 
minimax value of each node is shown next to the node. The minimax value of 
the root node A is a function of the values assigned to the leaf nodes D, E, F 
and G. Changing the value of E to 5 would increase the root value to 5. 
However  changing the value of E to 6 would only increase the root value to 5 
because the min player would then choose node D over node E. To change the 
root value to 6 one would have to change the values of both nodes D and E; 
changing the root value to 6 requires a "conspiracy" between nodes D and E 
(or a conspiracy between F and G).  The number of conspirators required to 
change the root value to a given value V provides a measure of the difficulty of 
changing the root value to V. This measure is not restricted to the root node; 
for any node j in a tree T one can determine the number of leaf nodes which 
must conspire to change the value of j to V. These observations lead to the 
following definition: 

Definition 2.3. Let  i be any node of the subtree T and let V be any possible 
node value. A set of  conspirators for i, T, and V is a set ~ of leaf nodes of T 
which does not contain any terminal nodes of the game G, i.e. every node in 
can be expanded, and by changing the values associated with the nodes in ~ it 
is possible to change the minimax value of the node i to V. A minimal set of  
conspirators for i, T, and V is a set of conspirators c¢ for i, T, and V such that 
every other  set of conspirators for i, T, and V has at least as many members as 
qg. The conspiracy number for i, T, and V, denoted A-needed(i,  T, V), is the 
size of a minimal set of conspirators for i, T and V. If there is no set of 
conspirators for i, T, and V (due to terminal nodes in the game G) ,  then 
A-needed(i,  T, V) is defined to be +~.  

The number A-needed(i,  T, V) measures the difficulty of changing the 
minimax value of i to the value V; changing the value of i to V requires a 
conspiracy of at least A-needed(i,  T, V) leaf nodes. If the minimax value of i is 
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equal to V, then A-needed(i, T, V) is zero. For computational purposes it will 
be convenient to distinguish between the difficulty of increasing the minimax 
value of a node and the difficulty of decreasing the minimax value of a node. 

Definition 2.4. The expression 1'needed(i, T, V) denotes the least number of 
conspirators needed to increase the value of i to V; if the minimax value of i is 
greater than or equal to V, then 1'needed(i, T ,V)  is zero, otherwise 
1'needed(i, T, V) equals A-needed(i, T, V). 

Similarly, +needed(i, T, V) denotes the number of conspirators needed to 
decrease the value of i to V; if the minimax value of i is already less than or 
equal to V, then +needed(i, T, V) equals zero, otherwise ~needed(i, T, V) 
equals A-needed(i, T, V). 

One would expect that as V gets larger it is more difficult to increase the 
value of a node to V. Similarly, as V gets smaller it should be more difficult to 
decrease the value of a node to V. This intuition is borne out by the following 
theorem: 

Monotonicity Theorem. The functions 1'needed(i, T, V) and ~needed(i, T, V) 
are monotone in V; the function 1'needed(i, T, V) is nondecreasing in V and the 
function Sneeded(i, T, V) is nonincreasing in V. 

The above theorem is implied by the following lemma: 

Lemma 2.5. Let V A denote the minimax root value of the tree T and let V be 
any value. If q~ is a set of conspirators for i, T and V, then the nodes in ~ can 
conspire to produce any root value between V A and V. 

It is difficult to obtain a precise analysis of the significance of the conspiracy 
number Tneeded(A, T, V) as a measure of the likelihood that the "true value" 
of A is greater than or equal to V. No assumption has been made here about 
the relationship between the static values of neighboring nodes in the game G. 
If there is really no relationship between the static-board values of neighboring 
nodes, then no incomplete tree has a stable root value: the result of a d-ply 
search would provide no information about the result of a (d + 1)-ply search. 
In the game of chess however there is clearly a relationship between the static 
values of nearby nodes. 

3. The Range of Likely Root Values 

As a search tree is grown its root value can change. A tree T is stable provided 
that the root value does not change much as the tree is expanded further. 
Conspiracy numbers can be used to bound the amount of expected variation in 
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Fig. 2. Values outside the range [1,3] require two of more conspirators. 

the root value. More specifically, for any tree T one can compute bounds Vmi n 

and Vma X such that the root value is not likely to go below Vmi n and not likely to 
go above Vma x. 

Let  T be the tree shown in Fig. 2. Increasing the value of node F to 3 will 
result in increasing the value of the root node A to 3. However  increasing the 
root value above 3 would require a conspiracy between nodes E and F. 
Increasing the root value above 4 requires a three-way conspiracy, e.g. E,  F, 
and G or H,  I, and J. On the other hand, node E can act alone to decrease the 
root value to 1. Decreasing the root value below 1 requires a two-way 
conspiracy, e.g. nodes E and K. Decreasing the root value below 0 requires a 
three-way conspiracy, e.g. nodes E, H,  and K. In summary,  for the tree shown 
in Fig. 2, values in the range [1, 3] can be achieved with a single conspirator;  
values in the range [0, 4] can be achieved with two conspirators; and any value 
can be achieved with three conspirators. 

Definition 3.1. Let  i be a node in a partial search tree T. The upper bound of 
node i with respect to conspiracy size N, denoted Vmax(i, T, N) ,  is the largest 
value for node i that can be achieved by N conspirators. 

Similarly, Vmin(i , T, N) is defined to be the least value for i achievable by N 
conspirators. 

Static values are allowed to be arbitrary real numbers  and a set of  real 
numbers  need not have a greatest  member .  However ,  there always exists a 
greatest  and least value for a node i that is achievable by N conspirators (the 
proof  is omit ted here). Fur thermore ,  the greatest  and least achievable values 
for i are either infinite or equal to the static value of some node in the tree 
rooted at i (again the proof  is omit ted).  

The least and greatest  achievable values for a node i with respect to a 
conspiracy size N determines a range of "likely values" for the node i. If  
conspiracies of more  than N nodes are considered unlikely, then the true value 
of node i is likely to be in the interval 

IVmin(i, T, N) ,  Vmax(i , T, N ) ] .  



294 D.A. McALLESTER 

4. Computing Bounds 

This section presents a technique for directly computing bounds of the form 
Vmax(i , T, N). This section also shows how conspiracy numbers of the form 
1'needed(i, T, V) can be derived from the computed bounds. In this section we 

will only consider upper bounds and conspiracy numbers for achieving values 
greater than the node's value; lower bounds and conspiracy numbers for 
achieving values less than the node's value can be computed with the dual 
algorithm which is obtained by interchanging min and max, reversing the 
direction of all inequalities between board values, and interchanging the 
vertical arrows 1' and +. 

Consider an arbitrary node i in a tree T and consider the sequence of 
bounds: 

Vmax(i , T, 0),  Vmax(i , T, 1), Vmax(i , T, 2),  Vmax(i, T, 3) . . . . .  

This is a nondecreasing sequence whose first value is the minimax value of i. 
Furthermore, the above sequence eventually takes on the constant value +~; 
when N equals the total number of leaf nodes in the tree rooted at i, then 
Vma~(i, T, N) must be +~. Thus there are only a finite number of finite values 
in the above sequence and one can explicitly store this list of finite values at 
every node in the search tree. 

Definition 4.1. The upper bounds sequence for a node i in a tree T, denoted 
1'bounds(i, T), is the initial sequence of finite values of the infinite sequence 

Vmax(i, T, 0),  Vmax(i, T, 1), Vmax(i, T, 2),  Vmax(i, T, 3) . . . . .  

Conspiracy numbers of the form 1'needed(i, T, V) can be easily computed 
from the bounds sequence 1'bounds(i, T). More specifically we have the 
following lemma: 

Bounds Lemma. For any non-leaf node i in a tree T, the conspiracy number 
Tneeded( j, T, V ) equals the number of  elements of the sequence 
1'bounds(j, T) which are strictly less than V. 

Proof. Recall that Vmax(J, T, N) is the largest value for j that can be achieved 
by N conspirators. This definition implies the following relations: 

V,,,x (j ,  T, N) < V implies 

Vmax(J, T, N) = V implies 

Vmax(J, T, N) > V implies 

]'needed(j, T, V) > N ,  

1'needed(j, T, V) = N ,  

1'needed(j, T, V) ~< N.  

These relations together imply that 1'needed(j, T, V) is the first integer N such 
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that Vmax(J, T, N) />  V. Furthermore,  the bounds sequence 1'bounds(j, T)  
starts with the value Vmax( j, T, 0). This implies that, if N is the first integer 
such that Vmax( j, T, N)>! V, then N equals the number of elements of the 
sequence 1'bounds(j, T)  which are strictly less than V. [] 

The bounds sequence 1'bounds(i, T) can be easily computed if i is a leaf 
node. More specifically, if i is a leaf node,  then one conspirator can increase i 
to + ~  so Vm,x(i, T, 1) is +~ .  Thus, if i is a leaf node of T, then 1'bounds(i, T)  
consists of the single value Vmax(i, T, 0) which equals the static value of i. 

Now suppose i is a non-leaf max node. Recall that Vmax(i , T, N)  is the 
greatest value that can be achieved by N conspirators. N conspirators can 
increase the value of i to V just in case N conspirators can increase the value of 
a single successor node to V. Thus the greatest value for i achievable by N 
conspirators is the greatest value achievable for any single successor node. This 
gives the following relation where S(i) is the set of successor nodes of i: 

Vmax(i, T, N) = Max Vm,x(j, T, N ) .  
jES(i) 

This relation allows the bounds sequence ~'bounds(i, T)  to be computed from 
the bound sequences of the successors of i. Since the bounds sequence is 
defined to contain only finite values, the length of the bounds sequence 
1'bounds(i, T) is the minimum length of the bound sequences of the successor 

nodes of i. 
The bounds sequence 1'bounds(i, T) can also be easily computed in the case 

where i is a min node. A bounds sequence can be viewed as a multiset: a set in 
which a given value can appear more than once. Furthermore,  any finite 
multiset of real numbers can be viewed as a bound sequence: any finite 
multiset of real numbers can be placed in nondecreasing order  yielding a 
bounds sequence. The following theorem provides a way of computing 
Sbounds(i, T) when i is a min node. 

Bounds Multiset Theorem. I f  i is a non-leaf rain node in a tree T, then the 
bound sequence 1'bounds(i, T) equals the multiset union of  the bound se- 
quences 1'bounds(j, T) where j is a successor of  i. 

Proof. Let i be a non-leaf min node of a tree T. Now, for an arbitrary value V 
consider the conspiracy number 1'needed(i, T, V). Since i is a min node,  
increasing the value of i to V requires increasing the value of every successor of 
i to V. Thus the number of conspirators needed to achieve V at node i is the 
sum of the number of conspirators needed to raise every successor of V to i. 
Thus we have the following relation where S(i) is the set of successors of i: 

Sneeded(i,  T, V) = ~ Sneeded(j, T, V) .  
jCS(i) 
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Now, by the Bounds Lemma, for each successor node j we know that 
~'needed(j, T, V) equals the number of elements of ~'bounds(j, T) which are 

less than V. Now let B be the multiset union of the bounds sequences of the 
successor nodes. The above equation for computing 1'needed(i, t, V) implies 
that 1'needed(i, t, V) equals the number of elements of B which are less than 
V. Now assume that B is placed in nondecreasing order,  i.e. B consists of the 
values B 0, B~, B2 , . .  , B k. We must show that B is the bounds sequence for 
node i. 

First suppose N ~< k. We wish to show that B N equals V,,ax(i, T, N ) ,  i.e. that 
B N is the largest value achievable by N conspirators. By the above comments a 
value V is achievable by N conspirators just in case there are N or fewer values 
of B less than V. It is easy to show that B N is the largest value with this 
property. 

Finally we must show that, if N > k, then Vmax(i , T, N) is +or, i.e. that N 
conspirators can achieve the value +o0. But by the above comments the 
number of conspirators needed to achieve the value +oo equals the number of 
elements of B less than +0% i.e. the number of elements of B. Thus k 
conspirators can achieve the value +oo and, if N > k, then N conspirators can 
also achieve the value +oo. [] 

The bounds multiset theorem implies that for a non-leaf min node i, the 
length of the bounds sequence ~'bounds(i, T)  is the sum of the length of the 
bounds sequences of its successor nodes. Thus the length of the sequence 
1'bounds(i, T) is minimized at max nodes and summed at min nodes. The 

experiments described in Section 8 indicate that the bound sequences tend to 
remain short. 

5. A Tree-Growth Procedure 

This section presents a tree-growth procedure for determining the value of the 
root node. The tree-growth procedure acts on any well-formed subtree T of the 
game G. The procedure iteratively chooses leaf nodes for expansion. The tree 
should be grown in a way that restricts the set of likely root values. The growth 
procedure takes two parameters: a range parameter  A and a conspiracy 
threshold N t. The range parameter  A states the accuracy to which the root 
value is to be determined. The conspiracy threshold N t tells the procedure that 
conspiracies of more than N t nodes are unlikely. The procedure terminates 
when the range of likely root values [Vmi n, Vmax] for the given threshold N t is 
such that Vma x - V m i  n is less or equal to A. The size of the tree grown by the 
procedure is governed by the desired accuracy A and the conspiracy threshold 
Nt; the greater the desired accuracy, and the greater the required conspiracy 
threshold, the larger the resulting tree. 

In determining the root value of a search tree one must be able to rule out 
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certain values. Intuitively ruling out a large value involves finding a strategy the 
min player can use for avoiding that value. Thus,  when at tempting to rule out a 
large value V one should expand leaf nodes which are involved in strategies the 
min player can use to avoid V; such nodes are called rain strategy leaf nodes. A 
min strategy leaf node for avoiding V is defined here to be a node involved in a 
minimal conspiracy set for increasing the root value to V. 

Definition 5.1. A leaf node k of  T will be called a min strategy leaf node for 
avoiding a value V larger than the root minimax value if k is contained in some 
minimal conspiracy set for converting the root value of T to V. 

Similarly, a leaf node j of T will be called a max strategy leaf node for 
avoiding a value V smaller than the root minimax value of T if j is contained in 
some minimal conspiracy set for converting the root value to V. 

There  is a technical reason for the term "min strategy leaf node".  Technical- 
ly, a min strategy is a plan of action for the min player: a min strategy is a 
subtree T '  of T which includes the root node of T and such that if i is a 
non-leaf min node of T which is in T '  then exactly one successor of i is in T '  
(the planned move) and if i is a non-leaf max node of T which is in T '  then 
every successor of i is in T' .  Intuitively, a min strategy establishes an upper  
bound on the root value; a min strategy is a plan of action for the min player 
and the root value can be no larger than the value achieved by this particular 
plan of action for the min player. For any given min strategy the max player 
will make  moves that lead to the largest leaf value. Thus the value achieved by 
a particular min strategy is the maximum of the strategy leaf values. If the 
minimax value of T is V then there exists a min strategy whose maximum value 
is V and there also exists a max strategy (the dual notion) whose minimum 
value is V. Definition 5.1 uses the term "min strategy leaf node"  because every 
min strategy leaf node for avoiding V is a leaf node in a min strategy for T 
whose maximum value is less than V (the proof  is omit ted here). The converse 
does not hold; there are leaf nodes in min strategies with maximum values less 
than V which are not min strategy leaf nodes for avoiding V under the above 
definition. The min strategy leaf nodes for avoiding V are the "shal low" leaf 
nodes in min strategies. 

To choose a leaf node for expansion one must decide which of the values 
Vmi n o r  Vma x tO try to rule out. The tree-growth procedure tries to rule out the 
value which is farthest f rom the current minimax root value. When trying to 
rule out Vma x one should expand a min strategy leaf node; when trying to rule 
out Vmi n o n e  should expand a max strategy leaf node. 

Basic tree-growth procedure. To determine a value for a node A in a min-max 
game G do the following: 

Step 1. Initialize T to be the subtree of G which contains only the node A. 
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Step 2. If Vmax(A , T, N t ) -  Vmin(A , T, N,)~< A, then terminate and return 
the range [Vmi.(A, T, Nt), Vmax(A, T, N,)]. 

Step 3. If Vmax(A , T, Nt) is further from the minimax value of the root node 
A than is Vmin(A , T, Nt) , then enlarge the tree T by expanding the leftmost 
min strategy leaf node for avoiding Vmax(A, T, Nt) , otherwise enlarge T by 
expanding the leftmost max strategy leaf node for avoiding Vmin(A, T, N~). 

Step 4. Go to Step 2. 

The above procedure does not specify how to find min and max strategy leaf 
nodes. Fortunately there is a simple technique for finding such leaf nodes by 
starting at the root node and recursively descending the tree choosing successor 
nodes on the bases of the bounds sequences at those nodes. The following 
procedure returns a min strategy leaf node for avoiding V. The procedure for 
finding max strategy leaf nodes is the dual of that for finding min strategy leaf 
nodes. 

Procedure MIN-STRATEGY-LEAF(i, V). 
Step 1. If i is a leaf node return i. 
Step 2. If i is a max node, then any minimal conspiracy set for increasing i to 

V will affect only a single successor node of i. In this case return the value of 
MIN-STRATEGY-LEAF(j, V) where j is any successor of i which minimizes 
~'needed(j, T , V ) ,  i.e. such that there is no other successor j '  with 
~'needed(j ' ,  T, V) less than ~'needed(j, T, V). 

Step 3. If i is a rain node, then any minimal conspiracy set for increasing i to 
V must affect every successor of i whose minimax value is less than V. In this 
case return the value of MIN-STRATEGY-LEAF(j, V) where j is any successor of i 
with minimax value less than V. 

The above procedure is nondeterministic; the choice of the successor node in 
Steps 2 and 3 are only partially constrained. The procedure always returns a 
rain strategy leaf node for avoiding V and every min strategy leaf node for 
avoiding V is a possible value of the procedure (the proof is based on the 
comments in Steps 2 and 3). To find the leftmost min strategy leaf node one 
simply takes the leftmost possible successor at Steps 2 and 3. The condition 
specified in Step 3 ensures that the node returned is a member of a min 
strategy whose maximum value is less than V. The condition specified in Step 2 
ensures that the node returned is "shallow". 

6. An Example of Tree Growth 

Consider the simple 1-ply tree shown in Fig. 3. The static value of the root 
node A is shown in parentheses next to the minimax value. The static values of 
non-leaf nodes will be important for understanding the way the tree has been 
grown. 
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A 1 (0) 
m a x  

B 1  CO DO 

Fig. 3. A 1-ply tree. 

Node A of Fig. 3 might represent a chess position in which the max (white) 
player has three moves. Fur thermore the static values can be interpreted as 
piece counts: the static value is computed by multiplying each piece by its point 
value and summing over all pieces on the board. The static values assigned to 
the nodes B, C, and D indicate that one of the moves available to the max 
player captures a pawn (worth 1 point) while the two other moves do not 
capture pieces. In this game static values will be integers and the range 
parameter  A will be zero; the procedure will not terminate until an exact root 
value is found. 

In this example the nodes of the game G are sorted left-to-right in a best-first 
fashion based on the static values; if i is a max node,  then successors of i with 
high static values are left of successors of i with low static values; if i is a min 
node,  then successors with low static values are left of successors with high 
static values. 

The tree-growth procedure can be used to enlarge the tree shown in Fig. 1. 
The first step is to compute the range of likely root values for this tree. In this 
example we will assume that the conspiracy threshold parameter  N t of the 
search procedure is two; if more than two conspirators are required to change 
the root value to V, then V is not likely. For the tree shown in Fig. 1 three 
conspirators are required to decrease the root value below 0. Thus 
Vmi,(A, T, 2) equals 0. However  any one of the leaf nodes could act alone to 
increase the root value to +~ .  Thus Vmax(A, T, 2) equals +~ .  Thus the range 
of likely root values for a conspiracy threshold of two is [0, +oo]. 

The likely root value which is farthest from the current minimax root value is 
clearly +~.  Thus the tree-growth procedure will at tempt to rule out the value 
+o0 by expanding min strategies for avoiding +~ .  Each of the nodes B, C, and 
D is a min strategy leaf node. The tree-growth procedure expands the leftmost 
of these nodes to get the tree shown in Fig. 4. 

A o (o) 
m a x  

B O ( 1 )  CO DO 
min 

EO F 1  G 1  

Fig. 4. The tree after one expansion. 
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A 0 (0) 
m a x  

B 0 (1) C -1 (0) D 0 (0) 
min  min  min  

/ l \  
E 0  F 1  G 1  H - 1  J 0  K 0  L 0  M 0  NO 

Fig. 5. The tree after three expansions.  

For a conspiracy threshold of 2 the range of likely root values is still [0, +~].  
The value + ~  is still farthest from the current minimax root value so the 
procedure will enlarge the tree by expanding strategies to avoid +~.  Either of 
the nodes C or D could act alone to increase the root value to +~ .  Thus both 
of these nodes are min strategy leaf nodes. The leftmost rain strategy leaf node 
for the tree shown in Fig. 4 is the node C. After C is expanded the only min 
strategy leaf node for avoiding the value + ~  will be the node D. Thus the next 
two nodes expanded by the tree-growth procedure are the nodes C and D. The 
result of expanding these nodes is shown in Fig. 5. 

To compute the range of likely root values for the tree shown in Fig. 5 note 
that E can act alone to increase the root value to 1 but three conspirators are 
needed to increase the root value to 2. Furthermore E and L can conspire to 
decrease the root value to - 1  but three conspirators are needed for the value 
- 2 .  Thus the range of likely root values for this tree is [ -  1, 1]. In this case Vmi . 
and Vma x are equally far from the root value 0. The tree-growth procedure 
given in the previous section breaks such ties in favor of Vmi n. Thus the 
tree-growth procedure will now grow a max strategy leaf nodes in an attempt 
to rule out the value - 1 .  The leftmost max strategy leaf node is the node E 
({E, L} is a minimal set of conspirators for decreasing the root value to - 1 ) .  
The result of expanding the node E is shown in Fig. 6. 

A ~ (o) 
l n a X  

B i (1) c - 1  (o) 
m i n  r n i n  

/ 1 \  
E 3  (0) F 1 (I 1 H-1  J 0 K 0 
131 ~X 

0 3  P O  Q o  

O0(0) 
Ill] 1}. f l \  

L 0  M 0  NO 

Fig. 6. The tree after four expansions.  
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A 1 (0) 
ma,x 

B 1 (1) C - 1  (0) 
min min 

E 3  (0) F 2  (1) G 1 (1) H - 1  J 0  K 0 
max max max 

0 3  P 0  Q 0  R 2  S 1  T 1  U 1  V 1  W 1  

D 0 (0) 
rain 

/ \ \  
LO MO NO 

Fig. 7. The tree after six expansions. 

Nodes F and G can conspire to convert the root value of Fig. 6 to 3; the 
range of likely root values for Fig. 6 is [ - 1 ,  3]. Since these values are equally 
far from the current root value the procedure defaults to ruling out the value 
- 1 by expanding a max strategy leaf node. The leftmost max strategy leaf node 
is now F. After expanding F the leftmost max strategy leaf node will be G. The 
result of expanding both F and G is shown in Fig. 7. 

For the tree shown in Fig. 7 three conspirators are needed to decrease the 
value of node B to - 1 .  Thus four conspirators are needed to decrease the root 
value to - 1 .  However  the node O can act alone to decrease the root value to 
0. The range of likely root values for the tree of Fig. 7 is [0, 3]. Since 3 is 
further from the current root value than 0 the tree-growth procedure now 
attempts to rule out the value 3 by expanding a min strategy leaf node. The 
nodes R, S and T are all min strategy leaf nodes and the value 3 is not 
eliminated until all three of these nodes have been expanded. The result of 
expanding these nodes is shown in Fig. 8. Figure 8 shows only the non-leaf 
nodes of the tree. For  each node which has a leaf node as a successor the 
relevant A-needed parameter  for that node is shown. 

For the tree of Fig. 8 three conspirators are needed to increase the value of 
node F to 3. Thus four conspirators are needed to increase the value of B to 3, 
so the value 3 has been ruled out. The range of likely root values for the tree of 
Fig. 8 is [0, 2]. The tree-growth procedure now attempts to rule out the value 0 
by expanding the leftmost max strategy leaf node. The node O (which is 
beneath node E)  can act alone to decrease the value of node B to 0, thus 
decreasing the root value to 0. When the node O is expanded the root  value 
does in fact drop to 0. After  the root value has dropped to 0 the tree-growth 
procedure attempts to rule out the value 2 by expanding min strategy leaf 
nodes. The expansion of min strategy leaf nodes continues until the procedure 
terminates with the tree shown in Fig. 9. Figure 9, like Fig. 8, only shows 
non-leaf nodes. 

The tree of Fig. 9 can be interpreted as a "p roof"  that the root minimax 
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! 

B 1 (1) 
min 

! 

E 3 (o) 
m a x  

lneeded(-1)=3 

! 

R 1 (2) 
rain 

l'needed(3)=3 

A 1 (0) 
m a x  

I 
I 

C-1 (0) 
rain 

tneeded(1)=3 

! 

D o (o) 
min 

Tneeded(1)=3 

I ! 

F 1 (1) C 1 (1) 
max ITI&X 

I lneeded(-1)=3 

I i 

S 0 (1) W 1 (1) 
min min 

Tneeded(2)=3 Tneeded(2)=3 

Fig. 8. The non-leaf nodes after nine expansions. 

A 0 (0) 
m a x  

, I 
B 0 ( 1 )  C-1 (0 )  
rain min 

l'needed(1)=3 

! 

D 0 (0) 
mln 

I'needed(1)=3 

! ! 

EO (0) F 1  (1) G 1 (1) 
max max max 

I I I I I 

O 0 (3) P -1 (0) Q 0 (0) R 1 (2) S 0 (1) 
rain rain rain rain rain 

1"needed(I)=3 Tneeded(1)=3 Tneeded(3)=3 Tneeded(2)=3 

x o (o) 
m a x  

AA -3 (0) AB 0 (0) AC 0 (0) 
min min min 

]'needed(i)=3 ]'needed(i)=3 Tneeded(1)=3 

Fig. 9. The non-leaf nodes of the final tree (sixteen expansions). 

! 

T 1 ( i )  
rain 

Tneeded(2)=3 
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value is 0; three conspirators are required to increase the root value to 1 and 
three conspirators are required to decrease the root value to - 1 .  The tree can 
also be interpreted as providing a strategy that the min player can use to avoid 
the value 1 and a strategy that the max player can use to avoid the value - 1 .  
For example consider the strategy which the max player can use to avoid the 
value - 1 .  From the initial position the max player has a choice of two moves 
each of which avoid the value - 1 .  Suppose the max chooses node B. No 
mat ter  how the min player responds at node B the max player has at least two 
choices for avoiding the value - 1 .  Thus a total of three leaf nodes must 
conspire against the max player before the max player can no longer avoid the 
value - 1 .  The strategy which the min player can use to avoid the value 1 is 
more  involved. If  the max player moves to either node C or D, then the min 
player immediately has three choices all of which avoid the value 1. If the max 
player moves to node B, then in order to avoid the value 1 the min player must 
move to node E. From node E the max player can choose between nodes O, P, 
or Q. If the max player chooses either P or Q, then the min player immediately 
has three choices for avoiding the value 1. If the max player chooses node O, 
then the min player is forced to move to node X. No mat ter  how the max 
player moves from node X the min player immediately has three choices for 
avoiding the value 1. 

The sequence of nodes leading from the root A to the node X form an 
exchange sequence. The max player begins by gaining a point (capturing a 
pawn). To avoid loosing material ,  the min player is forced to respond in a way 
that regains the point. The max player then gains three points (capturing a 
piece). To avoid a permanent  loss of material ,  the min player is again forced to 
immediately recapture.  By choosing capture moves the max player can " force"  
the min player to node X. The single node X can act alone to increase the root 
value to 1. To rule out the value 1 as a likely root value the value 1 must be 
ruled out as a likely value for the node X. However  there are no capture moves 
available from node X so a 2-ply expansion of node X rules out 1 as a likely 
value. 

Figure 9 shows that the three-growth procedure produces trees which are 
quite different from that produced by d-ply search with a-/3 pruning. The 
conspiracy-based procedure carries out capture moves to greater  depths than 
non-capture moves.  Capture moves generally have the proper ty  that there is 
only a small number  of viable responses; the second player must immediately 
recapture the lost material.  A move with a small number  of viable responses 
will be explored more deeply than moves which leave the opponent  many 
viable responses. 

7. A Comparison with a-,O Pruning 

If  all nodes in the game G have the same static value, then the tree-growth 
procedure of Section 5 is essentially the same as d-ply search with ~-/3 pruning. 
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For example consider an infinite game G where every node in G has two 
successors and the static value of every node is 0. Now suppose this tree is 
expanded using the tree-growth procedure of Section 5 with a conspiracy 
threshold parameter  N t equal to three (if all static values are the same, the 
range parameter  A is irrelevant). The initial range of likely root values is 
[ - ~ ,  +~]  and the procedure defaults to attempting to rule out Vmi n by 
expanding max strategy leaf nodes. By repeatedly expanding the leftmost max 
strategy leaf node for avoiding the value - ~  the procedure reaches a point 
where it has grown the tree shown in Fig. 10. Figure 10 does not show any 
minimax values; all minimax values are 0. 

Any set of conspirators for converting the root minimax value of the tree in 
Fig. 10 to - ~  must include nodes under both B and C. A max strategy leaf 
node is a member  of a conspiracy set for decreasing the root value. Since any 
such conspiracy set must include a node under B, the leftmost max strategy leaf 
node must always be under node B. Similarly, any set of conspirators for 
decreasing the value of the max node D must include a node under both F and 
G. Thus the leftmost conspirator for decreasing node D must be under node F 
rather than G. Similarly, any leftmost conspirator for decreasing the value of 
max node E must be under node H rather than I. As the growth process 
continues it will grow the tree under the leftmost successor of each nonterminal 
max node ignoring the other successors of max nodes. Eventually the tree- 
growth procedure generates the tree shown in Fig. 11. At this point the root 
value -0o has been ruled out; four conspirators are needed to decrease the root 
value to anything below 0 so, at a conspiracy threshold of 3, the range of likely 
root values is [0, +~].  Figure 11 shows only the non-leaf nodes of the tree. 

The nodes shown in Fig. 11 form a 4-ply max strategy. In general a d-ply 
max strategy is defined as follows: 

A 
m & x  

~.needed(-c~)=3 

/ \ 
B C 

min 
l n e e d e d ( - ~ ) = 2  

/ \ 
D E 

max max 
~n~d~d(-oo)--2 ~n~ed~d(-oo)=2 
/ \ / \ 

F G H I 

Fig. 10. A uniform tree after four expansions. 
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/ 
D 

m&x 
~ n e e d e d ( - 1 ) = 3  

/ 
F 

rain 
~needed(-1)=2 

/ \ 
H I 

m a x  m a x  
~ n e e d e d ( - 1 ) = 2  ~ n e e d e d ( - 1 ) = 2  

A 
m&x 

~.needed ( - 1 ) = 4  

/ 
B 

min 
~needed(-1)=3 

\ 
E 

m a x  
Shaded(-1)=3 

L 
min 

;eeded(~)=2 

M N 
max max 

J.needed(-1)=2 J.needed(-1)=2 

Fig. 11. A m a x  s t ra tegy  t ree  af ter  ten expans ions .  

Definition 7.1. A strategy for the max player provides exactly one max player 
response to every min player option. More specifically let d be any natural 
number  greater than 1. A d-ply max strategy in the game G is a subtree Tma x of 
G satisfying the following conditions: 

(1) Every node of T is within d ply of the root node of T. 
(2) For every max node j of T which is less than d ply from the root  of T 

exactly one successor node of j is in T. 
(3) For every min node j in T which is less than d ply from the root of T 

every successor node of j is in T. 
A d-ply max strategy T will be called leftmost if the successor chosen in 

condition (2) is always the leftmost successor. 
Strategies for the min player are similarly defined: strategies for the min 

player specify exactly one min-player response to every max-player option. 

Now consider standard d-ply search with a-fl  pruning. The search tree 
produced by d-ply search with a-J3 pruning always contains a d-ply max 
strategy Tma x and a d-ply min strategy Tmi n such that Tma x and Tmi . together 
constitute a "p roof"  that the minimax root value of the full d-ply search is a 
particular value V z .  The max strategy Tma x constitutes a proof that the max 
player can avoid any value less than the root value V a and the min strategy 
Tmi . constitutes a proof  that the min player can avoid any value greater than 
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the root value V A. An optimal d-ply a-/3 tree is one which can be written as the 
union of Tma x and Tmi n; an optimal tree contains just enough to prove that the 
root value of the full d-ply search is V m . If all nodes have the same static value 
and the same branching factor, then the conspiracy search technique of Section 
5 behaves like a-J3 search; both procedures grow a tree which can be written as 
the union of a d-ply min strategy and a d-ply max strategy. For the conspiracy- 
based procedure the depths of the max and min strategies, dmi n and dma x 
respectively, are determined by the conspiracy threshold parameter  N t and the 
branching factor b as follows: 

IN,- l l  
dmax = 2[ ~ - - - ~ J  , 

dmin = dmax + 1 • 

8. Empirical Results 

An iterative deepening version of the tree-growth procedure of Section 5 has 
been tested on randomly generated games trees and compared with iteratively 
deepened a-/3 search. The tests indicate that conspiracy-based search achieves 
more accurate minimax values for the same number of nodes searched. 

Experiments have shown that the following iterative deepening version of 
the tree-growth procedure works better than the basic procedure given in 
Section 5. The following procedure starts with a conspiracy threshold of 1 and 
gradually increases the conspiracy threshold as the root value becomes deter- 
mined (to within A) for each conspiracy threshold. 

Iteratively deepened tree-growth procedure. 
Step 1. Initialize T to be the subtree of G which contains only the root node 

A. 
Step 2. Let N be the least integer such that 

Vmax(A, T, N) - Vm,.(A, T, N) > A. 

Step 3. If Vma×(A, T, N) is further from the minimax value of the root node 
A than is Vmin(A , T, N),  then enlarge the tree T b y  expanding the leftmost min 
strategy leaf node for avoiding Vmax(A , T, N) ,  otherwise enlarge T by expand- 
ing the leftmost max strategy leaf node for avoiding Vm~,(A, T, N) .  

Step 4. Go to Step 2. 

The performance of the above tree-growth procedure was evaluated by 
measuring the error in the minimax value as a function of the number of nodes 
searched. 
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Definition 8.1. The e r r o r  of a partial search tree T is the absolute value of the 
difference between the minimax value of the root node of T and the true value 
of that node in the underlying game. 

The game trees used in the experiments had a fixed branching factor of ten 
and a depth of six ply. The static value of the root node of each tree was set to 
0. If j was a successor node of node i, then the static value of ] was set equal to 
the static value of i plus a randomly selected integer in the range [ - n ,  n]. The 
parameter  n, which determined the random variation in successor nodes, 
decreased as nodes got deeper  in the tree. More specifically n equaled 7 - d, 
where d is number of ply between the root node and the node whose static 
value is being assigned. Successors of the root node where assigned a static 
value with n equal to 6 while leaf nodes where assigned static values with n 
equal to 1. 

Forty random game trees were generated according to the above scheme. 
For each game tree the exact minimax root  value was determined by iteratively 
deepened a-/3 search to the full depth of the game. The above iterative 
deepening tree-growth procedure,  with A equal to 0, was also applied to each 
game until the search tree contained 10,000 nodes. Data was taken at various 
points during both the iteratively deepened t~-/3 search and the iteratively 
deepened conspiracy search. More specifically, when the number of nodes in 
the search tree reached certain thresholds the minimax value of the partial 
search tree was recorded. Given the minimax values of the partial trees at 
various points in the search, and the ultimate minimax value of the position, it 
was possible to compute the error  in the root value of the partial trees at 
various points in the search. Table 1 shows the mean error for the forty games 
searched as a function of the number  of nodes examined for both iteratively 
deepened a-/3 search and the above tree-growth procedure based on conspira- 
cy numbers. The table shows that the mean error drops considerably faster for 
the above procedure than it does for iteratively deepened t~-/3. 

Table 1 
Mean error as a function of nodes searched 

Search strategy Mean error 

a-/3 search 1.45 1.80 0.80 0.95 0 
Conspiracy search 1.52 0.95 0.15 0.02 0 

Number of nodes searched 100 300 1,000 3 , 0 0 0  10,000 

9. Determining a Best Move 

The tree-growth procedure of Section 5 is designed to determine the value of a 
given node. In game playing, however,  the goal is to determine an optimal 
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successor node. For a given node i in a search tree T one can define a best 
successor as follows: 

Definit ion 9.1. Let i be a node in a search tree T. If i is a max node, then a best 
successor of i under N-way conspiracies is any successor j such that 
Vmin(J, T, N) is greater than or equal to Vmax(J', T, N) for all successor nodes 
j '  other than j. If i is a min node, then a best successor for i under N-way 
conspiracies is defined in a dual way. 

If j is a best successor of i, then the minimax value of i equals the minimax 
value of j and, furthermore,  this will remain true under any N-way conspiracy, 
i.e. this will remain true under any modification of N leaf nodes. Thus, 
assuming conspiracies of more than N nodes are unlikely, a best successor node 
under N-way conspiracies is likely to be an optimal successor under the actual 
node values. This notion of an optimal successor is derived from the observa- 
tions made by Berliner [7] in developing the B* algorithm. 

Note that it is possible for a node i to have a best successor for N-way 
conspiracies even if the value of i has not been determined for N-way 
conspiracies, i.e. even when Vmax(i, T, N) is strictly greater than Vmi,(i, T, N). 
Thus it is possible to determine a best successor even when exact minimax 
values have not been (or cannot be) determined. 

The goal of a game playing program is to determine the best successor for a 
certain position. To determine the best successor of a max node one can either 
try a prove-best strategy by trying to raise the lower bound of a potentially best 
successor, or one can try a disprove-rest strategy by trying to lower the upper 
bound of all successors other than the potentially best successor. These 
observations are also derived from Berliner's B* algorithm. Under  either 
strategy the first step is to pick a potential best successor j. Under  the 
prove-best strategy (for a max root node) one should expand a max strategy 
leave node under j for avoiding Vmin(J, T, N).  Under  the disprove-rest strategy 
one should pick some other successor j '  such that Vmax(J', T, N) is greater than 
Vmin(J, T, N) and then expand a min strategy leaf node under j '  for avoiding 
the value Vmax(J', T, N). These observations can be incorporated into the 
following iteratively deepened procedure for finding a best successor: 

Procedure  to find a best successor.  
Step 1. Initialize T to be the subtree of G which contains only a root node 

and its immediate successors. 
Step 2. Let N be the least integer such that the root node has no best 

successor for N-way conspiracies (N will be at least 1). 
Step 3. Let  j be a best successor of the root node for ( N -  1)-way con- 

spiracies. 
Step 4. Choose a strategy: either prove-best or disprove-rest. 
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Step 5. If the strategy is prove-best, then expand the leftmost max strategy 
leaf node under j for avoiding the value Vmin(j, T, N). 

Step 6. If the strategy is disprove-rest, then choose some successor j '  of the 
root node such that Vmax(J', T, N) is greater than Vmin(j, T, N) and expand a 
min strategy leaf node under j '  for avoiding the value Vmax(J', T, N). 

Step 7. Go to Step 2. 

The above procedure does not specify how to choose a strategy or how to 
choose an alternative successor in the disprove-rest strategy. With conspiracy 
numbers there is a lot of information that can be used in making these 
decisions. For example, the likelihood of decreasing Vmax(]' , T, N) below 
Vmin(J, T, N) may depend on whether or not Vmax(J' , T, N - 1) is greater than 
Vmin(j, T, N). Further research is needed to find good heuristics for making 
these choices. Palay [8] has explored heuristics for making these choices in the 
context of B*. 

10. Modifying the Static Evaluator 

The previous section shows how ideas from the B* search technique can be 
used with conspiracy numbers. This section presents another idea for B* search 
that can be used with conspiracy numbers: the static evaluator can be modified 
to return ranges of values. Section 4 shows that all the relevant parameters of a 
node i in a tree T are determined by its bounds sequences ~'bounds(i, T) and 
~bounds(i, T). These bounds sequences are both singleton sequences for leaf 

nodes. The static evaluator could be modified to return bounds sequences 
which were longer than singletons and the procedures presented above could 
run without any additional modification. 

A classical static evaluator could be used to generate more than singleton 
bounds. For example, consider a max leaf mode i with static value V. One 
could assign i an upper bound sequence of (V, V + A) and a lower bound 
sequence of (V, V, V -  A) where A is a game-dependent parameter. Note that 
the lower bound sequence gives tighter bounds than the upper bound se- 
quence: max nodes are more likely to increase under expansion than decrease. 

In a particular game there may be ways of computing bound sequences by 
examining the structure of a given position. For example, "static" values in 
chess can be computed by performing an a-/3 minimax search of capture 
moves. Consider a max leaf node. Let V be the value returned by an a-/3 
search of capture moves. Let Vthreat be the value returned by an a-/3 search of 
capture moves under the assumption that the min player moves first. The value 
Vthreat gives the threat presented by the min player if the max player does 
nothing. Vthreat is a good lower bound on the value of the position. In this case 
the upper bound sequence for i can be assigned the singleton (V} and the 
lower bound sequence can be assigned the doubleton (V, Vthreat}. 
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I I .  Conclusions 

Conspiracy number s  have several advantages  over classical a-f l  search tech- 
niques.  First ,  critical l ines of play can be explored more  deeply than noncri t ical  
lines. The  ou tcome of a critical l ine of play can have a strong influence on the 
min imax  value of the root  node ;  in order  to accurately de te rmine  the min imax  
root  value one  must  accurately de te rmine  the ou tcome  of critical lines of play. 
Second,  conspiracy number s  provide  a pr incipled way of spending more  t ime 
analyzing difficult posi t ions than  easy posi t ions;  one can con t inue  searching 
unti l  a given conspiracy threshold is reached.  A n d  third,  because conspiracy 
n u m b e r s  assign value ranges to nodes  in the search tree,  conspiracy numbe r s  
can be used to de te rmine  a best  move  in a m a n n e r  analogous  to that  used in 
B*. 

Ul t imate ly  the ideas p resen ted  here should be judged  at t o u r n a m e n t s  for 
game playing machines.  
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