ARTIFICIAL INTELLIGENCE 97

Depth-First Iterative-Deepening:
An Optimal Admissible Tree Search™

Richard E. Korf**

Department of Computer Science, Columbia University,
New York, NY 10027, U.S.A.

ABSTRACT

The complexities of various search algorithms are considered in terms of time, space, and cost of
solution path. It is known that breadth-first search requires too much space and depth-first search can
use too much time and doesn’t always find a cheapest path. A depth-first iterative-deepening
algorithm is shown to be asymptotically optimal along all three dimensions for exponential tree
searches. The algorithm has been used successfully in chess programs, has been effectively combined
with bi-directional search, and has been applied to best-first heuristic search as well. This heuristic
depth-first iterative-deepening algorithm is the only known algorithm that is capable of finding
optimal solutions to randomly generated instances of the Fifteen Puzzle within practical resource
limits.

1. Introduction

Search is ubiquitous in artificial intelligence. The performance of most Al
systems is dominated by the complexity of a search algorithm in their inner
loops. The standard algorithms, breadth-first and depth-first search, both have
serious limitations, which are overcome by an algorithm called depth-first
iterative-deepening. Unfortunately, current Al texts either fail to mention this
algorithm [10, 11, 14], or refer to it only in the context of two-person game
searches [1,16]. The iterative-deepening algorithm, however, is completely
general and can also be applied to uni-directional search, bi-directional search,
and heuristic searches such as A*. The purposes of this article are to demon-
strate the generality of depth-first iterative-deepening, to prove its optimality
for exponential tree searches, and to remind practitioners in the field that it is
the search technique of choice for many applications.

Depth-first iterative-deepening has no doubt been rediscovered many times

* This research was supported in part by the Defense Advanced Research Projects Agency under
contract N00039-82-C-0427, and by the National Science Foundation Division of Information
Science and Technology grant IST-84-18879.

** Present address: Department of Computer Science, University of California, Los Angeles, CA
90024, U.S.A.

Artificial Intelligence 27 (1985) 97-109
0004-3702/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)

98 R.E. KORF

independently. The first use of the algorithm that is documented in the
literature is in Slate and Atkin's Chess 4.5 program [15]. Berliner [2] has
observed that breadth-first search is inferior to the iterative-deepening al-
gorithm. Winston [16] shows that for two-person game searches where only
terminal-node static evaluations are counted in the cost, the extra computation
required by iterative-deepening is insignificant. Pearl [12] initially suggested the
iterative-deepening extension of A*, and Berliner and Goetsch [3] have im-
plemented such an algorithm concurrently with this work.

We will analyze several search algorithms along three dimensions: the
amount of time they take, the amount of space they use, and the cost of the
solution paths they find. The standard breadth-first and depth-first algorithms
will be shown to be inferior to the depth-first iterative-deepening algorithm.
We will prove that this algorithm is asymptotically optimal along all three
dimensions for exponential tree searches. Since almost all heuristic tree sear-
ches have exponential complexity, this is a fairly general result.

We begin with the problem-space model of Newell and Simon [9]. A
problem space consists of a set of states and a set of operators that are partial
functions that map states into states. A problem is a problem space together
with a particular initial state and a set of goal states. The task is to find a
sequence of operators that will map the initial state to a goal state.

The complexity of a problem will be expressed in terms of two parameters:
the branching factor of the problem space, and the depth of solution of the
problem. The node branching factor (b) of a problem is defined as the number
of new states that are generated by the application of a single operator to a
given state, averaged over all states in the problem space. We will assume that
the branching factor is constant throughout the problem space. The depth (d)
of solution of a problem is the length of the shortest sequence of operators that
map the initial state into a goal state. The time cost of a search algorithm in
this model of computation is simply the number of states that are expanded.
The reason for this choice is that we are interested in asymptotic complexity
and we assume that the amount of time is proportional to the number of states
expanded. Similarly, since we assume that the amount of space required is
proportional to the number of states that are stored, the asymptotic space cost
of an algorithm in this model will be the number of states that must be stored.

This work is focused on searches which produce optimal solutions. We
recognize that for most applications, optimal solutions are not required and
that their price is often prohibitive. There are occasions, however. when
optimal solutions are needed. For example, in assessing the quality of non-
optimal solutions, it is often enlightening to compare them to optimal solutions
for the same problem instances.

2. Breadth-First Search

We begin our discussion with one of the simplest search algorithms, breadth-

DEPTH-FIRST ITERATIVE-DEEPENING 99

first search. Breadth-first search expands all the states one step (or operator
application) away from the initial state, then expands all states two steps from
the initial state, then three steps, etc., until a goal state is reached. Since it
always expands all nodes at a given depth before expanding any nodes at a
greater depth, the first solution path found by breadth-first search will be one
of shortest length. In the worst case, breadth-first search must generate all
nodes up to depth d, or b+ b*+ b*+ - - -+ b? which is O(b?). Note that on the
average, half of the nodes at depth d must be examined, and therefore the
average-case time complexity is also O(b?).

Since all the nodes at a given depth are stored in order to generate the nodes
at the next depth, the minimum number of nodes that must be stored to search
to depth d is b*', which is O(b?). As with time, the average-case space
complexity is roughly one-half of this, which is also O(b?). This space
requirement of breadth-first search is its most critical drawback. As a practical
matter, a breadth-first search of most problem spaces will exhaust the available
memory long before an appreciable amount of time is used. The reason for this
is that the typical ratio of memory to speed in modern computers is a million
words of memory for each million instructions per second (MIPS) of processor
speed. For example, if we can generate a million states per minute and require
a word to store each state, memory will be exhausted in one minute.

3. Depth-First Search

Depth-first search avoids this memory limitation. It works by always generating
a descendant of the most recently expanded node, until some depth cutofl is
reached, and then backtracking to the next most recently expanded node and
generating one of its descendants. Therefore, only the path of nodes from the
initial node to the current node must be stored in order to execute the
algorithm. If the depth cutoff is d, the space required by depth-first search is
only O(d).

Since depth-first search only stores the current path at any given point, it is
bound to search all paths down to the cutoff depth. In order to analyze its time
complexity, we must define a new parameter, called the edge branching factor
(e), which is the average number of different operators which are applicable to
a given state. For trees, the edge and node branching factors are equal, but for
graphs in general the edge branching factor may exceed the node branching
factor. For example, the graph in Fig. 1 has an edge branching factor of two,
while its node branching factor is only one. Note that a breadth-first search of
this graph takes only linear time while a depth-first search requires exponential
time. In general, the time complexity of a depth-first search to depth d is O(e?).
Since the space used by depth-first search grows only as the log of the time
required, the algorithm is time-bound rather than space-bound in practice.

Another drawback, however, to depth-first search is the requirement for an
arbitrary cutoff depth. If branches are not cut off and duplicates are not

100 R.E. KORF

F1G. 1. Graph with linear number of nodes but exponential number of paths.

checked for, the algorithm may not terminate. In general, the depth at which
the first goal state appears is not known in advance and must be estimated. If
the estimate is too low, the algorithm terminates without finding a solution. If
the depth estimate is too high, then a large price in running time is paid relative
to an optimal search, and the first solution found may not be an optimal one.

4. Depth-First Iterative-Deepening

A search algorithm which suffers neither the drawbacks of breadth-first nor
depth-first search on trees is depth-first iterative-deepening (DFID). The al-
gorithm works as follows: First, perform a depth-first search to depth one.
Then, discarding the nodes generated in the first search, start over and do a
depth-first search to level two. Next, start over again and do a depth-first
search to depth three, etc., continuing this process until a goal state is reached.

Since DFID expands all nodes at a given depth before expanding any nodes
at a greater depth, it is guaranteed to find a shortest-length solution. Also.
since at any given time it is performing a depth-first search, and never searches
deeper than depth d, the space it uses is O(d).

The disadvantage of DFID is that it performs wasted computation prior to
reaching the goal depth. In fact, at first glance it seems very inefficient. Below.
however, we present an analysis of the running time of DFID that shows that
this wasted computation does not affect the asymptotic growth of the run time
for exponential tree searches. The intuitive reason is that almost all the work is
done at the deepest level of the search. Unfortunately, DFID suffers the same
drawback as depth-first search on arbitrary graphs, namely that it must explore
all possible paths to a given depth.

Definition 4.1. A brute-force search is a search algorithm that uses no in-
formation other than the initial state, the operators of the space, and a test for
a solution.

Theorem 4.2. Depth-first iterative-deepening is asymptotically optimal among
brute-force tree searches in terms of time, space, and length of solution.

DEPTH-FIRST ITERATIVE-DEEPENING 101

Proof. As mentioned above, since DFID generates all nodes at a given depth
before expanding any nodes at a greater depth, it always finds a shortest path
to the goal, or any other state for that matter. Hence, it is optimal in terms of
solution length.

Next, we examine the running time of DFID on a tree. The nodes at depth d
are generated once during the final iteration of the search. The nodes at depth
d — 1 are generated twice, once during the final iteration at depth d, and once
during the penultimate iteration at depth d — 1. Similarly, the nodes at depth
d — 2 are generated three times, during iterations at depths d, d — 1, and d - 2,
etc. Thus the total number of nodes generated in a depth-first iterative-
deepening search to depth d is

b+ 26 + 36"+ -+ db.
Factoring out b? gives

b1+2b7"+3b72+ - +db"?).
Letting x = 1/b yields

b1+ 2x"+3x% 4 - -+ dx*Y).
This is less than the infinite series

A1+ 2x" +3x*+4x°+ -+ 1),
which converges to

b*(1—x)? for abs(x)<1.

Since (1-x)7 or (1- 1/b) 2, is a constant that is independent of d, if h>1
then the running time of depth-first iterative-deepening is O(b?).

To see that this is optimal, we present a simple adversary argument. The
number of nodes at depth d is b%. Assume that there exists an algorithm that
examines less than b nodes. Then, there must exist at least one node at depth
d which is not examined by this algorithm. Since we have no additional
information, an adversary could place the only solution at this node and hence
the proposed algorithm would fail. Hence, any brute-force algorithm must take
at least cb? time, for some constant c.

Finally, we consider the space used by DFID. Since DFID at any point is
engaged in a depth-first search, it need only store a stack of nodes which
represents the branch of the tree it is expanding. Since it finds a solution of
optimal length, the maximum depth of this stack is d, and hence the maximum
amount of space is O(d).

102 R.E. KORF

{1-1/B)2
o

1 2 3 4 5 8 7 8 9
Branching Factor B

FIG. 2. Graph of branching factor vs. constant coefficient as search depth goes to infinity.

To show that this is optimal, we note that any algorithm which uses f(n) time
must use at least k log f(n) space for some constant k [7]. The reason is that
the algorithm must proceed through f(n) distinct states before looping or
terminating, and hence must be able to store that many distinct states. Since
storing f(n) states requires log f(n) bits, and log b is d log b, any brute-force
algorithm must use kd space, for some constant k.]

The value of the constant (1— 1/b)"* gives an upper bound on how much
computation is wasted in the lower levels of the search, since it is the limit of
the constant coefficient as the search depth goes to infinity. Fig. 2 shows a
graph of this constant versus the branching factor. As the branching factor
increases, the constant quickly approaches one. For branching factors close to
one, however, the value of the constant coefficient approaches infinity as the depth
goes to infinity.

5. Bi-Directional Search

For those problems with a single goal state that is given explicitly and for which
the operators have inverses, such as the Fifteen Puzzle, bi-directional search

DEPTH-FIRST ITERATIVE-DEEPENING 103

[13] can be used. Bi-directional search trades space for time by searching forward
from the initial state and backward from the goal state simultaneously, storing the
states generated, until a common state is found on both search frontiers.
Depth-first iterative-deepening can be applied to bi-directional search as follows:
A single iteration consists of a depth-first search from one direction to depth &,
storing only the states at depth k, and two depth-first searches from the other
direction, one to depth k and one to depth k + 1, not storing states but simply
matching against the stored states from the other direction. The search to depth
k + 1is necessary to find odd-length solutions. This is repeated for k from zero (to
find solutions of length one) to d/2. Assuming that a hashing scheme is used to
perform the matching in constant time per node, this algorithm will find an
optimal solution of length d in time O(b**) and space O(h*?). In experiments
involving Rubik’s Cube [8], which has an effective branching factor of 13.5, this
algorithm was used to find solutions up to 11 moves long on a DEC VAX 11/780.

6. Heuristic Search

Depth-first iterative-deepening can also be combined with a best-first heuristic
search such as A* [6]. The idea is that successive iterations correspond not to
increasing depth of search, but rather to increasing values of the total cost of a
path. For A*, this total cost is composed of the cost so far in reaching the node
(g) plus the estimated cost of the path from the node to a goal state (k).
Iterative-deepening-A* (IDA*) works as follows: At each iteration, perform a
depth-first search, cutting off a branch when its total cost (g + h) exceeds a
given threshold. This threshold starts at the estimate of the cost of the initial
state, and increases for each iteration of the algorithm. At each iteration, the
threshold used for the next iteration is the minimum cost of all values that
exceeded the current threshold.

A well-known property of A™ is that it always finds a cheapest solution path if
the heuristic is admissible, or in other words never overestimates the actual
cost to the goal [6]. This property also holds for iterative-deepening-A*.
Furthermore, IDA* expands the same number of nodes, asymptotically, as A*
in an exponential tree search.

The proofs of these results are much simpler and more intuitive if we restrict
our attention to cost functions which are monotonically non-decreasing along
any path in the problem space. Such a heuristic is called monotone or consistent
[11]. Formally,

Definition 6.1. A cost function f(n) is monotone if for all nodes n and s(n),
where s(n) is a successor of n, f(n) < f(s(n)).

This restriction is not essential, and slightly more complex proofs will es-
tablish the same results without it. As a practical matter, however, almost ali

104 R.E. KORF

reasonable cost functions are monotone [11]. In fact, using an idea proposed by
Mér6 [17], we can formally make this assumption without loss of generality, as
shown in the following lemma.

Lemma 6.2. For any admissible cost function f. we can construct a monotone
admissible function ' which is at least as informed as f.

Proof. We construct f’ recursively from f as follows: if # is the initial state,
then f'(n) = f(n); otherwise, f'(s(n)) = max|[f(s(n)), f'(n)}. Clearly, ' is mono-
tone since f'(n) < f'(s(n)). In order to show that f' is admissible, note that f'(n)
is equal to the maximum value of f applied to all the predecessors of n along
the path back to the initial state. Since f is admissible, the maximum value of f
along a path is a lower bound on the cost of that path, and hence a lower
bound on the cost of n. Thus, f' does not violate admissibility. Furthermore, f’
is at least as informed as f since for all n, f'(n) = f(n) and hence f'(n) is at least
as accurate an estimate as f(n).]

Note that this lemma provides a simple and intuitive proof of the ad-
missibility of A*. If we restrict our attention to cost functions which are
monotone non-decreasing, and A* always expands the open node of least cost,
it is clear that the first solution it finds will be one of least cost. Similarly, the
result below follows just as easily.

Lemma 6.3. Given an admissible monotone cost function, iterative-deepening-
A* will find a solution of least cost if one exists.

Proof. Since the initial cost cutoff of IDA™ is the heuristic estimate of the cost
of the initial state, and the heuristic never overestimates cost, the length of the
shortest solution cannot be less than the initial cost cutoff. Furthermore, since
the cost cutoff for each succeeding iteration is the minimum value which
exceeded the previous cutoff, no paths can have a cost which lies in a gap
between two successive cutoffs. Therefore, since IDA* always expands all
nodes at a given cost before expanding any nodes at a greater cost. the first
solution it finds will be a solution of least cost. [

Not only does IDA* find a cheapest path to a solution and use far less space
than A*, but it expands approximately the same number of nodes as A* in a
tree search. Combining this fact with several recent results on the complexity
and optimality of A* allows us to state and prove the following general
result:

Theorem 6.4. Given an admissible monotone heuristic with constant relative
error, then iterative-deepening-A* is optimal in ferms of solution cost, time,
and space, over the class of admissible best-first searches on a tree.

DEPTH-FIRST ITERATIVE-DEEPENING 105

Proof. From Lemma 6.3, we know that IDA™* produces a solution of optimal
cost.

To determine the time used by IDA*, consider the final iteration, in other
words the one which finds a solution. It must expand all descendents of the
initial state with values greater than or equal to the initial cost estimate and less
than the optimal solution cost, plus some number of nodes whose cost equals
the optimal solution cost. If A* employs the tie-breaking rule of ‘most recently
generated’, it must also expand these same nodes. Thus, the final iteration of
IDA* expands the same set of nodes as A* under this tie-breaking rule.
Furthermore, if the graph is a tree, each of these nodes will be expanded
exactly once. IDA* must also expand nodes during the previous iterations as
well. However, Pearl has shown that if the heuristic used by A* exhibits
constant relative error, then the number of nodes generated by the algorithm
increases exponentially with depth [11]. Thus, we can use an argument similar to
the proof of Theorem 4.2 to show that the previous iterations of IDA* do not
affect the asymptotic order of the total number of nodes [18]. Thus, IDA* expands
the same number of nodes, asymptotically, as A*. Furthermore, a recent result of
Dechter and Pearl [5] shows that A* is optimal, in terms of number of nodes
expanded, over the class of admissible best-first searches with monotone
heuristics. Therefore, IDA* is asymptotically optimal in terms of time for tree
searches.

Since the number of nodes grows exponentially, we can again appeal to the
argument in the proof of Theorem 4.2 to show that the space used by IDA* is
also asymptotically optimal. |

Is the assumption of constant relative error, i.e. that the error in the estimate
grows at the same rate as the magnitude of the actual cost, valid for heuristics?
Pearl observes that heuristics with better accuracy almost never occur in
practice. For example, most physical measurements are subject to constant
relative error [11]. Thus, we can conclude that heuristic depth-first iterative-
deepening is asymptotically optimal for most best-first tree searches which
occur in practice.

An additional benefit of IDA* over A* is that it is simpler to implement
since there are no open or closed lists to be managed. A simple recursion
performs the depth-first search inside an outer loop to handle the iterations.

As an empirical test of the practicality of the algorithm, both IDA* and A*
were implemented for the Fifteen Puzzle. The implementations were in pAsSCAL
and were run on a DEC 2060. The heuristic function used for both was the
Manhattan distance heuristic: for each movable tile, the number of grid units
between the current position of the tile and its goal position are computed, and
these values are summed for all tiles. The two algorithms were tested against 100
randomly generated, solvable initial states. IDA* solved all instances with a
median time of 30 CPU minutes, generating over 1.5 million nodes per minute.
The average solution length was 53 moves and the maximum was 66 moves. A*

106 R.E. KORF

solved none of the instances since it ran out of space after about 30 000 nodes
were stored. An additional observation is that even though IDA™* generated
more nodes than A®, it actually ran faster than A* on the same problem
instances, due to less overhead per node. The data from this experiment are
summarized in Table 1. These are the first published optimal solution lengths
to randomly generated instances of the Fifteen Puzzle. Although the Fifteen
Puzzle graph is not strictly a tree, the edge branching factor is only slightly
greater than the node branching factor., and hence the iterative-deepening
algorithm is still effective.

TasLE 1. Optimal solution lengths for 100 randomly generated Fifteen Puzzle
instances using iterative-deepening-A* with Manhattan distance heuristic func-
tion

NUMBER INITIAL STATE ESTIMATE ACTUAL TOTAL NODES
1 141315711 1295602148103 41 57 276,361,933
2 1354109 1281422371015 116 43 55 15,300, 442
3 14 78 213 111049 1250 36115 41 59 565,994,203
4 51210 71511 140821133496 42 56 62,643,179
5 47 14 1310 3 9121156151280 42 56 11,020,325
6 147 1912 36 15811 25100 4 13 36 52 32,201,660
7 211 15513467 1281019 3140 30 52 387,138,094
8 1211 153804261395 141107 32 50 39,118,937
S 3149115482 13126 7101150 32 46 1.650,696
10 1311890157 104 36 1451221 43 59 198,758,703
11 591314637 1210840152111 43 57 150, 346,072
12 14196 481257 23010 11 13 15 35 45 546, 344
13 3652100151414 13 12 98 117 36 46 11,861,705
14 76811151410 349 131520 12 41 59 1,369,596,778
15 1311 4121891565 1427 3100 44 62 543,598,067
16 13251091568 14 13 11124720 24 42 17,984,051
17 1514041116 137589 3210 12 46 66 607,399,560
18 6014121159 1011 47 28 3513 43 55 23,711,067
19 711831406 1514135512 2 10 36 46 1,280,495
20 612113137 9152148104150 36 52 17,954,870
21 128146 11470511015 3 139 2 34 54 257,064,810
22 1439115845117 101302126 41 59 750,746,755
23 109 311013 21456478151 12 33 49 15,971,319
24 731413411085 129 11215620 34 54 42,693,209
25 114271010 156 9 1483135 12 32 52 100,734,844
26 5731215131480 109614211 40 58 226,668,645
27 14181526039 12101347 5 11 33 53 306,123,421
28 13146 12451093102 151187 36 52 5,934,442
29 9802151414 3107 511 136 12 38 54 117,076,111
30 12 1526 1144853760610 139 11 35 47 2,196,593
31 128151310546 3211971410 38 50 2.351,811
32 14 10 94136 5821270131115 43 59 661,041,936
33 14 351511 6 13 9010 2 12 417 8 42 60 480,637,867
34 611 781325411039 140 12 15 36 52 20,671,552
35 161214 321584513907 11 10 39 55 47,506,056
3 126 0473151139811 2 14 5 10 36 52 59.802,602
37 817 12 110 10 59 156 13 14 2 3 4 40 58 280,078,791
38 7158 2 136 312110 4 109 51 14 41 53 24,492,852
39 9041011415 3126 5 7 11 13 8 2 35 49 19,355,806
40 11 51144121002 713 39 156 8 36 54 63,276,188
41 8 13 10 911 3156 01 2 14 12 5 4 7 36 54 51,501,544
42 457291412 1303611811510 30 42 877,823
43 11 1514 131 9104362127580 48 64 41,124,767
44 12 9068351424117 1011513 32 50 95,733,125
45 3149 7 12 15041856 11 10 2 13 3s 51 6.158,733
46 84611412 2 1513109537011 35 49 22.119,320
47 610114158 3 513027 49 11 12 35 47 1.411,294
48 811 46 7 3109 2 1215130165 14 39 49 1,905,023
49 100 24516 12111397 153148 33 59 1.809,933,698
50 12 5131121009784 3 146 151 39 53 63,036,422

51 102841501 14 11 13 36 9 7 5 12 44 56 26,622,863

DEPTH-FIRST ITERATIVE-DEEPENING

TaBLE 1. Continued

INITIAL STATE

108012376 2114411151395
149 1213154810021731156
12110810 21315547369 141
13814 3910715541012 2 6 11
3152511647 129101314 108
5116 94131208 2151017 314
501584611410 11 39 7 12 2 13
15146 710 1 011 128 49 25 13 3
11 14 131231241579 5106820
6133211951017 12 148 40 15
46120 1429131183157 1015
810 911 1417151340126 253
52140786 31112 131541091
8 32101246 11 1351501 2 14
1614123511580 10 13 %742
1248361110 150 5 14 12 13 9
3113121052806 11141549
051511449 21381011127 3
1513124065 28149 13 10 7 11
57011121910 156 2 38413 14
1215111045 140137129836
614 10 5158 71342012911 13
14 13411 1586 90731210125
14401065139 21315127811
15108 3069511413117 212 4
013 2412146915110 311587
314136 415895121002 7111
019711135314 124286 10 15
110158 13123510146 149 72
13091211 635158110414 27
14 10 2113981173612 15540
12391451026 11150 14 7 13 8
158 10 7012141596 31311 4 2
47131012 961281453011 15
60510 1112921743148 1315
9511101302186 14124 7 315
1521211 14139513870 106 4
1117 41013 389140156 5 2 12

7
1
7
7
6

54711112 141510 1386 209 3
975214151210 11 3618130 4
32790151246 115148 13101
139146 128123407510 11 15
57118014 913101231561 42
4 36 1371590 105811 212114
171514264912 11133085 10
914578151210 4136 120 11 3
011 3125219810 14157 4 136
71540109 2512111361 3 14 8
11 4086 10 513 127 14 3129 15
LEGEND
STATE
2 3 ESTIMATE
6 7 ACTUAL
10 11
14 15

34567891011 12 13 14 15

7. Two-Person Games

ESTIMATE ACTUAL

TOTAL NODES

377,141,881
465,225,698
220,374,385
927,212
1,199,487,996
8,841,527
12,955,404
1,207,520,464
3,337,690,331
7,096,850
23,540,413
995,472,712
260,054,152
18,997,681
1,957,191,378
252,783,878
64,367,799
109,562, 359
151,042,571
8,885,972
1,031,641,140
3.222,276
1,897,728
42,772,589
126,638,417
18,918, 269
10,907,150
540, 860
132,945,856
9,982,569
5,506,801,123
65,533,432
106,074,303
2,725,456
2,304,426
64,926,494
6,009,130,748
166,571,097
7,171,137
602,886,858
1,101,072,541
1,599,909
1,337,340
7,115,967
12,808,564
1,002,927
183,526,883
83,477,694
67,880,056

Initial heurlistic estimate
Length of optimal solutlon
TOTAL NODES Total number of states generated

107

In the discussion so far, we have assumed a single-agent search to find a
solution to a problem, and have been concerned with minimizing time and
space subject to a fixed solution depth and branching factor. However, a

108 R.E. KORF

two-person game such as chess with static evaluation and mini-max search is a
somewhat different situation. In this case, we assume that accuracy of the static
evaluation increases with increasing search depth, and hence we want to
maximize search depth subject to fixed time and space constraints. Since
depth-first iterative-deepening minimizes, at least asymptotically, time and
space for any given search depth, it follows that it maximizes the depth of
search possible for any fixed time and space restrictions as well.

Another reason that DFID is used in game programs is that the amouant of
time required to search the next deeper level in the tree is not known when the
ply begins, and the search ply may have to be aborted due to time constraints.
In this case, the complete search at the next shallower depth can be used to
make the move.

Finally, the information from previous iterations of a DFID search can be
used to order the nodes in the search tree so that alpha-beta cutoff is more
efficient. In fact, the best move at a given iteration has been shown experi-
mentally to terminate the next iteration in about 70% of cases. This improve-
ment in ordering, which is critical to alpha-beta efficiency, is only possible with
the use of iterative-deepening [4].

8. Conclusions

The standard algorithms for brute-force search have serious drawbacks.
Breadth-first search uses too much space, and depth-first search in general uses
too much time and is not guaranteed to find a shortest path to a solution. The
depth-first iterative-deepening algorithm, however, is asymptotically optimal in
terms of cost of solution, running time, and space required for brute-force
tree searches. DFID can also be applied to bi-directional search, heuristic
best-first search, and two-person game searches. Since almost all heuristic
searches have exponential complexity, iterative-deepening-A* is an optimal
admissible tree search in practice. For example, IDA™ is the only known algorithm
that can find optimal paths for randomly generated instances of the Fifteen Puzzle
within practical time and space constraints.

ACKNOWLEDGEMENT

Judea Pearl originally suggested the application of iterative-deepening to A*. Hans Berliner pointed
out the use of iterative-deepening for ordering nodes to maximize alpha-beta cutoffs. Michael
Lebowitz, Andy Mayer, and Mike Townsend read earlier drafts of this paper and suggested many
improvements. Andy Mayer implemented the A* algorithm that was compared with IDA*. An
anonymous referee suggested the shortcomings of depth-first search on a graph with cycles. Finally,
Jodith Fried drew the figures.

REFERENCES

1. Barr, A. and Feigenbaum, E.A. (Eds.), Handbook of Artificial Intelligence (Kaufmann, Los Altos,
CA, 1981).

DEPTH-FIRST ITERATIVE-DEEPENING 109

9]

. Berliner, H., Search, Artificial Intelligence Syllabus, Department of Computer Science, Carncgic-

Mellon University, Pittsburgh, PA, 1983.

. Berliner, H. and Goetsch, G., A quantitative study of search methods and the effect of constraint

satisfaction, Tech. Rept. CMU-CS-84-147, Department of Computer Science, Carnegic-Mellon
VUniversity, Pittsburgh, PA, 1984.

4, Berliner, H., Personal communication, 1984,

10.
11.

12

P

13.

i4.
15.

16.
17.

18.

. Dechter, R. and Pearl, J., The optimality of A* revisited, in: Proceedings of the National

Conference on Artificial Intelligence, Washington, DC (August, 1983) 95-99.

. Hart, P.E., Nilsson, N.J. and Raphael, B., A formal basis for the heuristic determination of

minimum cost paths, IEEE Trans. Systems Sci. Cybernet. 4(2) (1968) 100-107.

. Hopcroft, J.E. and Ullman, 1.D., Introduction to Automata Theory, Languages, and Computation

(Addison-Wesley, Reading, MA, 1979).

. Korf, R.E., Learning to Solve Problems by Searching for Macro-Operators (Pittman, London,

1985).

. Newell, A. and Simon, H.A., Human Problem Solving (Prentice-Hall, Englewood Cliffs, NJ,

1972).

Nilsson, N.J., Principles of Artificial Intelligence (Tioga, Palo Alto, CA, 1980).

Pearl, J., Heuristics (Addison-Wesley, Reading, MA, 1984).

Pearl, J., Personal communication, 1984.

Pohl, 1., Bi-directional search, in: B. Meltzer and D. Michie (Eds.), Machine Intelligence 6
(American Elsevier, New York, 1971) 127-140.

Rich, E., Artificial Intelligence (McGraw-Hill, New York, 1983).

Slate, D.J. and Atkin, L.R., CHESS 4.5 The Northwestern University Chess Program (Springer-
Verlag, New York, 1977).

Winston, P.H., Artificial Intelligence (Addison-Wesley, Reading, MA, 1984).

Mérd, L., A heuristic search algorithm with modifiable estimate, Artificial Intelligence 23 (1984)
13-27.

Korf, R.E., Iterative-deepening-A*: an optimal admissible tree search, in: Proceedings Ninth
International Joint Conference on Artificial Intelligence, Los Angeles, CA, 1985.

Received December 1984; revised version received March 1985

