
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. 7, JULY 1994 701

Enhanced Iterative-Deepening Search
Alexander Reinefeld, Member, IEEE, and T. Anthony Marsland, Senior Member, IEEE

Abstruct- Iterative-deepening searches mimic a breadth-first
node expansion with a series of depth-first searches that operate
with successively extended search horizons. They have been
proposed as a simple way to reduce the space complexity of best-
first searches like A* from exponential to linear in the search
depth.

But there is more to iterative-deepening than just a reduction
of storage space. As we show, the search efficiency can be greatly
improved by exploiting previously gained node information. The
information management techniques considered here owe much
to their counterparts from the domain of two-player games,
namely the use of fast-execution memory functions to guide the
search. Our methods not only save node expansions, but are also
faster and easier to implement than previous proposals.

Zndex Terms- Heuristic search, A* algorithm, depth-first
iterative-deepening, game trees, computer chess methods, Fifteen
Puzzle, Traveling Salesman Problem.

I. INTRODUCTION

F the brute-force searches, depth-jirst iterative- 0 deepening (DFID) is practical, because it combines
breadth-first optimality with the low space complexity of
depth-first search. Its basic idea is as simple as conducting
a series of independent depth-first (backtracking) searches,
each with the look-ahead horizon extended by an additional
tree level. With the iterative approach, DFID is guaranteed to
find the shortest solution path, just as a breadth-first search
would. But in contrast to the latter, DFID needs negligible
memory space. Its space complexity grows only linearly
with the search depth.

The origins of iterative-deepening search trace back to the
late 1960s [24], when programmers sought a reliable mecha-
nism to control the time consumption of the newly emerging
toumament chess programs. Rather than blindly committing to
one direct depth-d search of unpredictable duration, the total
search task was subdivided into separate depth-first searches
with successively deepened search horizons 1 , 2 , . . . ~ n. This
allows the search process to halt with a best available answer
as soon as some time limit is exceeded.

Even more important are the various memory functions
that also build upon the iterative-deepening approach. They
use node information from previous iterations to increase

Manuscript received August 23, 1991; revised August 2, 1993. This work
was supported by the Natural Sciences and Engineering Research Council
of Canada under Grants OPG36952 and OPG07902. Recommended for
acceptance by Associate Editor T. Dean.

A. Reinefeld is with the Paderbom Center for Parallel Computing, D-33095
Paderbom, Germany; email: aauni-paderbom.de.

T. A. Marsland is with the Computing Science Department, University of
Alberta, Edmonton, AB, Canada T6G 2H1; email: tony@cs.ualberta.ca.

IEEE Log Number 940002 1.

the cutoffs in the current iteration. Among the data that can
be reused, move ordering and node scoring information is
of special importance. Various memory functions have been
invented to store this and other information: refutation or killer
tables [I], transposition tables [30], [26] and history tables
[23]. Taken together, the memory functions not only pay for
themselves by yielding better frontier node evaluations, but
also produce searches that are faster than a direct depth-d
search [13].

In the mid 1980s, iterative-deepening was refined for heuris-
tic single-agent searches like A* and AO*. Here, the succes-
sive iterations do not correspond to increased search depth,
but to increased cost bounds of the currently investigated path.
But again, iterative-deepening reduces the space complexity to
linear while preserving optimality. As a consequence, Korf's
Iterative-Deepening A* (IDA*) [8] can be applied in domains
where excessive space requirements cause A* to fail. One such
application is the 15-puzzle.

The better space efficiency is paid for by an increased
number of node expansions. Because IDA* does not retain
path information from one iteration to the next, the shallow
tree parts are reexamined several times. Following the same
lines as in multi-agent search, IDA* (like any iterative search)
should be improved by using node information of previous
iterations.

In this paper, we show how to adapt search enhancements,
that have been found effective in the domain of two-player
games to single-agent heuristic search. The techniques include
node presorting, the use of principal variations, transposi-
tion and refutation tables and other memory functions [13],
[191. With the best combination of these techniques optimal
solution paths for the 15-puzzle can be found, while visit-
ing less than half the nodes seen by pure IDA*. This is
better than can be achieved with a perfectly informed (and
hence nondeterministic) IDA* algorithm, one that performs
an iterative depth-first search up to the penultimate iteration
and finds a solution node right at the beginning of the
iteration.

In practice, speed of computation is more important than the
number of node expansions. Since memory tables are accessed
in unit time, the running time of the proposed algorithms is
almost proportional to the node count. Maximal speedups are
achieved in applications with time-consuming heuristic esti-
mation functions. One such example is the traveling salesman
problem. Here a 73% node reduction (as compared to IDA*)
speeds up the total runtime by 72%, giving an almost linear
improvement. This is a remarkable result, considering that
unsuccessful table accesses must be compensated for by even
greater savings elsewhere.

0 162-8828/94$04.00 0 1994 IEEE

http://aauni-paderbom.de

702 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. I, JULY 1994

11. APPLICATIONS

Heuristic single-agent search techniques can be found in
applications where a decision tree/graph is built to deter-
mine the best of several alternatives by searching. Typical
applications include perception problems, theorem proving,
robot control, pattern recognition, expert systems and some
combinatorial optimization problems of Operations Research.
For our experiments we selected two problem domains that
build large search graphs and are easy to implement: the
15-puzzle and the traveling salesman problem.

A . The Fifteen-Puzzle

The 15-puzzle is simple, but has combinatorially large
problem space of 16!/2 sz 1013 states. It consists of fifteen
square tiles 1 , 2 , . . . , 15, located in a square tray of size
4 x 4. One square, the blank square, is kept empty so that
an orthogonally adjacent tile can slide into its position-thus
leaving a blank square at its origin. The problem is to rearrange
some given initial configuration into a goal configuration
without lifting one tile over another.

Although it would seem easy to find any solution to this
problem, it is much harder to determine a mapping of the given
initial configuration to the goal configuration with the fewest
moves. Using IDA*, it takes some hundred millions of node
generations to solve a random problem instance, when using
the most popular heuristic estimate function, the Manhattan
or city-block distance. This estimate is a sum of the minimum
displacement of each tile from its goal position. As can be
proved by induction, the Manhattan distance is admissible: It
never overestimates the distance to the goal configuration. This
is an important requirement if a heuristic search algorithm is
to find an optimal(= shortest) path to a goal state.

B. The Traveling Salesman Problem

The traveling salesman problem (TSP) refers to the task of
finding a shortest (or least cost) tour that returns to the starting
point after visiting all cities in the n-city network only once.
The TSP is known to be NP-hard, and exact solutions can only
be obtained for tours involving some hundred cities.

While the well-known branch-and-bound algorithms of Held
and Karp [5] or Little et al., [lo] would be among the
preferred solution techniques for the TSP in practice’, we have
chosen the method described by Pearl’s book [16, p. IOffl,
because it builds a graph rather than a tree. It does so by
successively adding unvisited cities to the end of a temporary
partial contiguous tour for as long as their cost estimates
do not exceed the given bound. For our experiments, we
randomly generated the coordinates of n cities and computed a
complete symmetric euclidean cost matrix C with components
cij denoting the (air-) distances between cities i and j .

As is customary, we used the cost of the minimum spanning
tree (MST) covering the cities not yet visited as a bounding

‘ A s pointed out by Sen and Bagchi 1251, the depth-first node expansion
strategy of Little’s method can also be adapted to best-first or depth-first
iterative-deepening. But since the search graph is small and the node expansion
time is appreciable, there is no point in using IDA* or any of its memory
variants.

algorithm IterativeDeepening;
begin

bound := h(root);
repeat

until soloed;

{ initial bound is heuristic estimate }
{ perform iterative-deepening DFS }

bound := DepthFirstSearch (root, bound);

end.

function DepthFirstSearch (n, bound): intr
begin

{ returns next cost bound }

if h(n) = 0 then begin

end;
new-bound := 00;
for each successor n, of n do begin

if c(n,n,) + h(n,) 5 bound then

else

if solved then return (a);
new-bound := min (new-bound, 6);

solved := true; return (0); { found a solution: return cost }

{ search deeper }
b := c(n, n,) + DepthFirstSearch (n,, bound - c(n, n,));

b := c(n, n,) + h(n,); { cutoff }

{ compute next iteration’s bound }

{ return next iteration’s bound }
end;
return (new-bound);

end;

Fig. 1 . Iterative-Deepening A*.

function for the completion cost of the current partial tour.
More precisely, complete a I-tree [4] that is connected via two
extra edges to the first and the last city of the partial tour. Using
Prim’s algorithm, a 1-tree of n cities is computed in O(n2)
operations. Hence, the node expansion time is substantial,
making the TSP an ideal test suite supplement to the 15-puzzle.

111. ITERATIVE-DEEPENING A*

Iterative-Deepening A*, IDA* for short, performs a series of
cost-bounded depth-first searches with successively increased
cost thresholds. The total cost f(n) of a node n is made up
of g(n), the cost already spent in reaching that node, plus
h(n), the estimated cost of the path to the nearest goal. At
each iteration, IDA* does the search, cutting off all nodes that
exceed a fixed cost bound. At the beginning, the cost bound is
set to the heuristic estimate of the initial state, h(root). Then,
for each iteration, the bound is increased to the minimum path
value that exceeds the previous bound.

Fig. 1 gives a sketch of IDA*. The algorithm consists of a
main IterativeDeepening routine, that sets up the cost bounds
for the single iterations, and a DepthFirstSearch function,
that actually does the search. The maximum search depth
is controlled by the parameter bound. When the estimated
solution cost c(n , ni) +h(ni) of a path going from node n via
successor n, to a (yet unknown) goal node does not exceed the
current bound, the search is deepened by recursively calling
DepthFirstSearch. Otherwise, subtree n, is cut off and the node
expansion continues with the next successor ni+l.

Of all path values that exceed the current bound, the smallest
is used as a cost bound for the next iteration. It is computed
by recursively backing up the cost values of all subtrees
originating in the current node and storing the minimum value
in the variable new-bound. Note, that these backed-up values
are revised cost bounds, which are usually higher-and thus
more valuable-than a direct heuristic estimate. In the simple

REINEFELD AND MARSLAND: ENHANCED ITERATIVE-DEEPENING SEARCH 703

IDA* algorithm shown in Fig. I , the revised cost bounds
are only used to determine the cost threshold for the next
iteration. In the Appendix (Fig. 7), the cost thresholds are used
in conjunction with a transposition table, where they can also
serve to increase the cut offs.

With an admissible heuristic estimate function (i.e., one that
never overestimates), IDA* is guaranteed to find the shortest
solution path. Moreover, it has been proved [SI, [I l l , that
IDA* obeys the same asymptotic branching factor as A*, if
the number of nodes grows exponentially with the solution
depth. This growth rate is called the heuristic branching
factor bh (see Section VI-B). On the average IDA* requires
b h / (b h - 1) times as many operations as A* [27]. While
the search overhead diminishes with increasing bh (e.g., 11%
overhead at bh = 10,1% at bh = loo), IDA* benefits from the
elimination of unnecessary node reexaminations in the shallow
tree parts (all iterations before the last).

IV. RELATED LIMITED-MEMORY ALGORITHMS

Two algorithms have been proposed to fill the gap between
the memory-intensive A* on one hand and the faster, but more
node-intensive, IDA* on the other.

The recursive best-first search algorithm MREC of Sen and
Bagchi [25] might best be described as an amalgamation of
IDA* and A*. Like IDA*, MREC examines all nodes by
iterative-deepening until a goal is found. Like A*, MREC
grows an explicit search graph, that contains all nodes of
the first few levels, until the available memory is exhausted.
Unfortunately, the memory usage is static. Once occupied
by an initial explicit subgraph, the storage space cannot be
re-used by other, more valuable, nodes that might be found
at a later time. Moreover, MREC starts all iterations at the
root node, irrespective of the explicit search graph that has
already been built [25, p. 2981. The repeated traversal of
the explicit graph is the price paid for the missing Open
List2. Even so, one would expect a graph traversal to be
much faster than generating new nodes and linking them to
the explicit search graph. Unfortunately, this is not the case
for the 15-puzzle with its cheap operator generation, and so
Sen and Bagchi report poor CPU-time results [25, p. 2991.
They also achieved only negligible (1%) node reductions as
compared to IDA*, because their implementation builds a tree
rather than a graph and does not check for duplicate nodes.
On the other hand, MREC-implementations that eliminate
transpositions were also found to be slow (again compared
to IDA*), because of the costly maintenance of the explicit
search graph.

Chakrabarti et al. [2] proposed MA*, an iterative-deepening
variant of Ibaraki’s Depth-m Search [7]. Similar to MREC,
MA* also grows an explicit search graph until the available
memory space is filled, but dynamically re-assigns memory
space to other states according to some merit value. When

2The repeated traversal of the explicit graph can be avoided by connecting
the frontier nodes in a linked list, similar to A*’s Open list. But even then the
savings would be negligible, because the list must be sorted before each new
iteration. Only the backing up of the revised estimate values in the explicit
search graph can be saved.

the storage space is exhausted, MA* is not confined to a pre-
determined node expansion sequence, but starts a best-first
search on the tip nodes of the explicit graph. The node selec-
tion is based on the backed-up cost values of the pruned nodes,
which are more reliable than the direct heuristic estimates.
Although the favorable results of Chakrabarti et al. were found
to be erroneous (they “inadvertently compared IDA*’s node
generation figures with MA*(O)’s node expansion figures” [12,
p. 2]), other researchers built successfully on the basic ideas
of MA*. Iterative Threshold Search (ITS) by Mahanti et al.
[121 employs a fast node generation scheme (like IDA*) while
making use of the available memory (like MA*). Another
proposal, SMA* by Russell [21], uses the “pathmax” node
information of the backed up f-values.

Still, these methods are much slower than the memory-
functions proposed here, while generating a comparable
amount of nodes. This is because the others all operate on an
explicit search graph, whose construction, maintenance and
traversal is a time-consuming task. In each step, a tip node
n with lowest f(n)-value is selected for further expansion.
Since the explicit graph must be large to be effective, the
node selection time dominates the runtime of the algorithm.
From experiments with Stockman’s best-first SSS*-algorithm
[28] it is known that a reduced node count seldomly pays
for the increased memory management costs [19]. Our hash
transposition techniques, in contrast, are easier to implement
and operate in unit time while retaining a similar node-count
performance (cf. [141).

Aside from these memory-bound variants, there has been a
flurry of proposals, that attempt to reduce the search overhead
by allowing a more liberal increase of the cost bound between
iterations. Such methods include Stickel and Tyson’s evenly
bounded depth-first search [27], Sarkar et al.’s iterative-
deepening search with controlled re-expansion IDA*_CR [22],
and the hybrid iterative-deepening depth-first branch-and-
bound variants DFS* [18] by Rao et al. and Wah’s MIDA*
[29]. All these schemes attempt to reduce the search overhead
by increasing the cost bound by more than the minimal value.
As a consequence, node expansion cannot be stopped at the
first solution, but must continue (possibly with a reduced cost
bound) until all shorter paths have been checked for cheaper
solutions. However, these systems can be modified to retum
quickly with a (possibly nonoptimal) solution, one that is
known to lie within an €-range from optimality.

v . IMPROVED INFORMATION MANAGEMENT

The enhancements that exploit node information gathered
in the process of iterative-deepening follow two different
schemes: 1) node ordering, and 2) avoidance of reexpansions.

A . Strategies for Trees: Node Ordering Heuristics

Node ordering refers to the dynamic reordering of node
successors. It speeds up the last iteration (where the goal is
found) by investigating the most plausible successors first, but
no savings are achieved in the shallower iterations. There are
three ordering schemes of interest:

1

704 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. 7, JULY 1994

SORT: The simplest type of node ordering works without
node information from previous iterations and has little space
overhead of O(7ud). It is based on rearranging the successors
ni of interior nodes ri in increasing order of their heuristic
estimates h(ni). Successors with low estimates are visited first,
with the intention of reducing the distance to the goal. Like
the well-known hill climbing techniques, SORT adds a local
best-first component to the otherwise random heuristic search.
In the 15-puzzle, SORT works much like a human player, who
initially tries to shift tiles as near as possible to their destination
positions.

Although this scheme helps humans in their search for
nonoptimal solutions, the savings achieved in (optimal) IDA*
search rarely compensate for the additional overhead [17 p.
47 I]. This is because of the limited information horizon that
the successor pre-sorting is based on. More sophisticated
variants of SORT work with revised cost values of deeper
tree levels (see the T R A N S ~ M O V E variant in Section V-B),
or rearrange the nodes of a whole search frontier 1171.

PV: When searching adversary game trees like chess or
checkers, each iteration yields w best paths starting at the
root node. One of them, the principal variation, is the move
sequence actually chosen if the players follow the minimax
principle. The other 11) - 1 paths are called refutation lines
[I] , [131; they serve to prove the inferiority of their particular
root move. Current principal variation and refutation lines are
re-expanded first during each new iteration.

In single-agent search problems, the refutation line idea is
not directly applicable, because there are no opponent moves
that could be refuted. Only the principal variation line (PV)
can be employed to investigate the most promising path first.
We extend the PV heuristic by saving a whole subtree of paths
from the root, instead of only the best available continuation.
The leaf nodes of this subtree all lie at the same maximum
distance from the start configuration. Because the search is
cost-bounded, these leaves lie closest to the goal, that is, they
have the largest 9- and consequently lowest h-values.

HISTORY: The history heuristic 1231 prove useful in the
domain of two player games. It achieves its performance
by maintaining a “score” table, called the history table, for
every move seen in the search graph. Note, that HISTORY is
the only heuristic that is based on sorting moves (operators)
rather than nodes (states). All moves that are applicable in a
given position are examined in order of their previous success.
Compared to SORT. the history heuristic is less sensitive to the
current context, yet it provides more reliable information on
the success of the operators. In addition, HISTORY does not
depend on domain specific knowledge (like heuristic estimate
functions). It simply accumulates success scores from the
previously expanded subtrees.

For the IS-puzzle, one needs a three-dimensional array that
holds a measure of the goodness of a move for each possible
tile, each source position and each move direction. This gives
16 (tiles) x 16 (positions) x 4 (max. move directions) =
1024 move scores. In the traveling salesman problem, a two
dimensional history table of size 71 x n is needed, where n is
the number of cities on the tour. As a measure for the goodness
of a move, we counted the number of occurrences the specific

a 9 1011 WIlR yJ
5 1 5 1

Fig. 2. Shortest move transposition in the AV-puzzle.

move led to the deepest subtree (i.e., the subtree that came
closest to the goal).

B . Advanced Techniques in Graphs: Avoiding Re-Expansions

Most applications spawn a decision graph (with multiple
paths ending in the same position) rather than a tree. In
such cases, memory functions should be employed to avoid
unnecessary re-expansions of previously visited nodes. The
utilization of memory tables is twofold: First, they are used
to eliminate cycles and transpositions within single iterations,
and second, they serve to cache node information from one
iteration to the next.

A move cycle is a sequence of operators, which, after going
through some intermediate states, finally retums to the starting
state. In general, move cycles can be eliminated with a stack
of size g that holds all nodes on the path from the root to
the current node. In the 15-puzzle, however, cycle elimination
does not pay off, because closed move cycles occur only
seldomly (less than 0.03% of the nodes lie on cycles, after
the trivial 2-move cycle is removed by the move generator).
As an example, the shortest cycle (see Fig. 2, which can be
viewed as a cycle when when reversing one line of arrows)
consists of 12 moves. Since cycles contain inferior nodes with
high goal distances h, the total expansion cost g + h usually
exceeds the cost threshold before completion. Note, that in
the traveling salesman problem all cycles are automatically
eliminated by the successor generator.

TRANS: Move transpositions are more common. They arise
when different paths end in the same position, see Fig. 2. In the
15-puzzle, transpositions occur in search depths 2 6. They can
be traced with a transposition table [30] that (ideally) holds
a representation of every visited position, plus the cost bound
to which the position has been searched. When the current
position is found in the table, its subtree can be pruned if the
remaining cost bound is less or equal to the corresponding
bound retrieved from the table. Pseudo code in the Appendix
(Fig. 7) illustrates the use of a transposition table in iterative-
deepening search. Note that revised cost values (back-up
values of deeper tree levels) are stored in the transposition
table, sometimes allowing cut offs, even when the remaining
search depth is deeper than that given in the table.

Because of its fast access time, a hashing technique is
customarily used for implementing large transposition tables.
The initial hash access index is a function of the board
configuration with all redundant information removed. In
the 15-puzzle, it includes the positions of all tiles on the
board, whereas in the traveling salesman problem the index
is a function of the subset of the remaining cities plus the
last visited city. Note, that this scheme allows pruning by
dominance [6], that is, other partial tours covering the same

REINEFELD AND MARSLAND: ENHANCED ITERATIVE-DEEPENING SEARCH 705

cities in a different order (but with the same first and last city)
are cut off.

Transposition tables should be allocated as much space as
possible. (We used 256 K entries in both the IS-puzzle and
TSP applications.) As the table gets filled, collisions occur.
But old information is only overwritten if the current position
has been searched more deeply.

TRANS+MOVE: When the current position is found in the
transposition table, but has been searched to an insufficient
depth, the formerly best move (the one yielding the longest
path) is retrieved from the table and tried first. Apart from
selecting promising moves first, this approach has the ad-
ditional advantage that information about the next position
will probably also be held in the table. Thus, complete sub-
variations are descended with minimal effort.

In the traveling salesman problem, move pre-sorting is based
on the successor values stored in the table, because a table
access is faster than the computation of the minimum spanning
tree (our heuristic estimate function).

VI. EXPERIMENTAL RESULTS
The performance of the algorithms has been empirically

evaluated using the 15-puzzle and the traveling salesman
problem.

A. The Fifteen-Puzzle

For the 15-puzzle, we used Korf’s selection of one hundred
randomly generated problem instances as a test suite [SI.
To ensure that the hard problems with high node counts
do not dominate the results, we computed the mean of the
percentage difference relative to Korf‘s published solutions.
Our replication of Korf‘s experiment identified three cases of
differing node counts (presumably due to typographical errors
in the original presentation [S, p. 1061):

No. Korf Our Version Difference
~ ~~

22 750,746,755 750,745,755 - 1,000

88 6,009,130,748 6,320,047,980 +3 10,9 17,232

89 1 6 6 ~ 7 I ,097 166,57 1,02 1 -76

In all, ten different combinations of enhancements were
tried and the results from six of them are presented. Table I
gives the average number of node generations (with standard
deviation 0) and the relative CPU time consumption of our
implementation. All data is normalized to that of pure IDA*.

As expected, the node ordering heuristics (SORT, PV and
HISTORY) are of limited use, because they only reduce the
search effort of the final iteration. Table I shows, that the pre-
sorting of successor nodes according to increasing heuristic
estimates (SORT) does not pay off-neither in terms of node
expansions, nor in terms of CPU time. A quick calculation
reveals that SORT favors board configurations with the blank
square being either in an edge or border position (Fig. 3),
because these configurations enjoy (statistically) lower h-
values:

el,. . . , e4: edge position
bl , . . . , bs: border position

Fig. 3 . Tile positions in the 15-puzzle

TABLE I
EMPIRICAL RESULTS OX THE 15-PUZZLE, 100 PROBLEMS BY KORF [8]

Algorithmn Nodes Time

IDA* 100 100
SORT 99 42 105

HISTORY 94 48 108
TRANS 53 6 76
TRANS+MOVE 46 28 63
IDA* (iter. 1 to R - 1) 54 26

PV 86 52 87

Let the blank be located in the center position cl . For
each adjacent field b3, b l , c2. c3, we calculate the probability
that SORT will first move the blank to that field, because the
resulting configuration has a lower heuristic estimate. Or, the
other way around, we enumerate for each source field all tiles
that reduce the heuristic distance:

b3: When a tile moves from b3 to c1 the heuristic distance
reduces by 1 in 12 out of 15 cases (because the tile’s
goal square is in the rightmost 3 x 4 block).

bl: When a tile moves from bl to c1 the heuristic distance
reduces by 1 in 12 out of 15 cases (because the tile’s
goal square is in the lower 4 x 3 block).

cp: When a tile moves from cp to c1 the heuristic distance
reduces by 1 in 7 out of 15 cases (because the tile’s
goal square is in the left 2 x 4 block).

cy: When a tile moves from cy to c1 the heuristic distance
reduces by 1 in 7 out of 1.5 cases (because the tile’s
goal square is in the upper 4 x 2 block).

In summary, there are 24(= 12 + 12) out of a total of
38(= 12 + 12 + 7 + 7) cases, where the blank will be moved
from c1 to a boarder position (b g or b l) first. This gives a total
of 24/38 = 63%. The chances vary slightly for all four center
positions (because of the asymmetry caused by the destination
square of the blank), but they are all between 58% and 63%,
which is well above average. Likewise, we calculate chances
between 44% and 55% for a blank to be first moved from a
boarder position b, into the adjacent edge e3, which is also
significantly higher than the expected random 33% chance.

On one hand, configurations with a blank tile in an outer
position have lower mobility and are thus less desirable. But
on the other, fewer moves are possible in such configurations,
which reduces the size of the emanating subtree. It seems that
the positive and negative effects of SORT just balance each
other, leaving no net gain [17, p. 4711. This is no surprise when
considering the limited information horizon that node ordering
is based on. We therefore implemented an extended sorting

706 IEEE TRANSACTIONS ON PAlTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. 7, JULY 1994

I

scheme that works on a deeper (two level) lookahead. But it
gave only marginal additional improvements while requiring
more CPU-time. Better results are achieved when the pre-
sorting is based on previously acquired node values of deeper
tree levels, see TRANSS-MOVE.

The PV heuristic is more effective than SORT: On the
average, 14% of the node expansions are saved by searching
the longest paths first (see Table I), which confirms recent
results on an exhaustive evaluation of the 8-puzzle [20]. How-
ever, the savings exhibit high variability. In some instances,
the principal variation subtrees lead directly to the goal,
whereas in other cases the PV-variant examines more nodes
than the original IDA*. Note, that the PV heuristic does not
involve time-consuming operations. It comes as a by-product
of the search for an optimal path. Thus, any savings in the
number of node expansions directly speeds up the execution
time.

The HISTORY heuristic saves only a meager 6% of the node
expansions, irrespective of the problem size. Considering its
remarkable success in the domain of chess [23], one would
have expected a much better result. But the two domains differ
in several respects. First, in chess, only a small fraction of
the total game tree is searched, so that the examined positions
obey similar properties. Hence, a chess move that once caused
a cutoff will probably be effective whenever it can be applied
in the future. This is not the case in the 15-puzzle, where board
configurations are widely different, because the search depths
(average of 53 moves) are greater.

Second, the 15-puzzle lacks clear criteria for measuring the
merit of a move, thus using the path lengths seems to be
an obvious choice. But in our experiments, it tums out that
many paths end at the same length, and hence a finer grained
secondary measure is needed. For example, something like a
chess evaluation function, which retains some secondary good
features, even though this might reduce the effectiveness of
IDA*, should be used.

With a transposition table (TRANS), IDA* consistently ex-
amines fewer nodes in every single problem instance, yielding
an average node count reduction of 47%. This is more than
the 35% savings achieved in the 8-puzzle [20], because the
pruned subtrees are deeper. More interestingly, no signs of
table overloading were spotted in the hard 15-puzzle problems
with large search trees. On the contrary: the performance
of the transposition table seems to increase with growing
problem size. This is because, on the one hand, there are more
transpositions and cycles in deeper search trees, and on the
other, many more nodes are eliminated by every single cutoff.
In practice, the low standard deviation is another favorable
aspect of TRANS, because one can expect an almost constant
efficiency gain by nearly one half for every problem.

Additional savings can be achieved by first expanding the
best move stored in the transposition table (TRANS+MOVE).
Generally, the best move is a good choice. In six problem
instances, however, the best move failed so miserably, that
slightly more nodes were searched than with the original IDA*.
The erratic behavior of these few cases results in a high
standard deviation, and is a typical property of tree pruning
systems.

140 h

?;at: 8 0 1

TRANS
TRANS~HISTORY

- - 1 , y T ; T ~ ~ ~ ~ + M ~ ~ ~

20
5 20% 21.40% 4160% 61.80% 2 81%

Proportion of Nodes Searched in the Last Iteration

Fig. 4. Relative performance of IDA* enhancements on the 15-puzzle.

The last line of Table I gives the average number of node
expansions in all iterations excluding the last. This number
corresponds to the best performance, that could be achieved
with a perfectly informed node ordering mechanism, one that
finds the goal node right at the beginning of the last iteration.
Viewed in this light, the combinations involving TRANS look
even more favorable since they search fewer nodes than even
this optimally informed IDA*.

These results are telling enough, but Fig. 4 presents the data
in a graphical form and shows more clearly how the use of a
transposition table is the one mechanism that is consistently
effective. Here, Korf's hundred random problem instances
are grouped into five sets (of increasing order of difficulty),
defined by the proportion of the nodes searched in the goal
iteration. The trees in the first problem set (0-20%) are already
relatively well ordered for the simple IDA* and it seems hard
to achieve further savings with any of the move ordering
heuristics. On the contrary: in their attempt to improve the
expansion order, HISTORY, SORT and PV often expand more
nodes in the end. Only when the proportion of the goal iteration
nodes is above 40% do these techniques become effective.

Schemes involving a hash table are almost equally effective
over the whole range of problems. A simple transposition
table (TRANS) saves about half the node expansions, while
the successor ordering techniques TRANSSMOVE and HISTORY
become even more effective when the tree is poorly ordered. In
practice, based on Fig. 4, one would use the TRANS+MOVE
combination.

B . The Traveling Salesman Problem

At first sight, the TSP seems to be more suited to iterative-
deepening search, because more successor-cities must be con-
sidered in the interior nodes of the TSP search graph than
there are move choices in the 15-puzzle. From this, one should
expect the node count to grow faster between iterations, which
in turn should reduce the overhead incurred by re-expanding
the shallow tree parts. But, as it tums out, the opposite is true.

REINEFELD AND MARSLAND: ENHANCED ITERATIVE-DEEPENING SEARCH 707

In the following, we distinguish two types of branching
factors. First, the edge branching factor be is defined as the
average number of operators (edges) that are applicable to
a state (node) of the search graph. It can be determined
by computing the ratio of the total move generations to the
number of interior (=nonterminal) nodes.

For the n-city TSP, we derive a lower bound of the
edge branching factor by counting the node successors of
an arbitrary path in the search graph. At the root node,
there exist n - 1 successors, at the first level n - 2, at the
second n - 3, and so on, up to k successors at the last
(cut off) level, where k is the number of the still unvis-
ited cities. For the longest path (the solution path) we have
[(n - 1) + (n - 2) + . . . + 3 + 2 + 1 + 1]/n M n/2. Since
all other paths in the search graph are incomplete, n/2 gives a
lower bound on the edge branching factor of the n-city TSP.

For the 15-puzzle, the edge branching factor is be M 2.
This number is derived directly from Fig. 3 by summing over
all possible tile positions the number of move choices and
dividing by 16 (that is, 48/16 = 3), and then adjusting for the
back move by subtracting 1. Hence, be M 2. In practice, be is
marginally higher, because there is no back move in the initial
position and because the blank is more likely to be located in
one of the four center positions.

The second important parameter, the heuristic branching
factor bh , measures how many new nodes are generated when
searching with the next larger cost bound. It is defined as
the average node ratio of two consecutive iterations, bh =
nodes,/nodes,-l. We include in the computation only the
shallow iterations 21, . . . , because in the last iteration
(where the goal is found) the node count depends much on
the expansion order and is therefore highly variable. Clearly,
bh depends on the quality of the heuristic estimate function
and the efficiency of the search method.

For the 15-puzzle, we determined bh = 6.68 (with U =
1.77) by running IDA* on Korf's selection of one hundred ran-
dom problem instances. This value is sufficiently high to allow
effective use of iterative-deepening techniques. Moreover, the
15-puzzle is one of the rare applications with bh > be, which
further increases the effectiveness of IDA* as compared to
other search methods. The heuristic branching factor is this
big, because an increase of the cost bound by 2 (which is the
only possible increase between iterations) allows all nodes at a
search frontier to be expanded by at least one extra level-and
some of them much more.

In the TSP, by contrast, the increase in the cost bound
between iterations is not fixed to a predetermined value. Most
often the cost bound is raised by a small amount only, allowing
extension of only few frontier nodes in the next iteration. This
results in a heuristic branching factor that is much lower than
the edge branching factor. The exact magnitude of bh depends
on the domain of the inter-city distances. In the extreme case,
that is with inter-city distances drawn from the real numbers,
only one frontier node (the one that gave rise to the temporary
iteration's cost bound) is expanded in every new iteration.
Then, the heuristic branching factor is close to 1 and iterative-
deepening is not efficient [18], [22] . The problem might be
overcome by increasing the cost bound by more than the

TABLE I1
RELATIVE PERFORMANCE ON THE ~WITY-TSP, 50 PROBLEMS

~ ~~~

Algorithmn Domain [1,501 Domain [1,1001

IDA* 100 100 100 100
PV+SORT 95 95 98 99
HISTORY 95 95 99 99
TRANS 36 38 21 28
TRANS+MOVE 36 31 21 28
TRANS+REHASH 28 30 19 20
IDA*, i l . i , - l 92 91

Nodes Time Nodes Time

minimum value that exceeded the previous bound. But this
approach could return sub-optimal solutions, unless special
provision is taken.

The heuristic branching factor can be controlled in the range
1 5 bh 5 be by choosing suitable domains, from which
the inter-city distances are drawn. This makes the TSP an
ideal vehicle for studying the effectiveness of the proposed
IDA* enhancements under various bh. In our experiments, we
used city coordinates that have been randomly drawn from
the integer intervals [l, 251, [l, 501, [l, 751 and [l, 1001. This
results in heuristic branching factors (of the simple IDA*)
ranging from 1.71, 1.29, 1.20 to 1.13, respectively. A total of
fifty 20-city problems were solved for each algorithdinterval
combination. All interconnections are included in the network,
and the traveling salesman problem is complete, symmetric
and euclidean. As is customary, we used the minimum span-
ning tree [4] of the remaining cities to estimate the completion
cost of the partial tour.

Table I1 shows the experimental results with city coordinates
drawn from the intervals [l, 501 and [l, 1001. The perfor-
mance is given relative to IDA* in terms of node expansions
and CPU time consumption. As can be seen, neither of
the node ordering heuristics (PVSSORT or HISTORY) yields
substantial performance improvements. This is not surprising,
since only 8% of the total nodes are visited in the last iteration,
yielding an upper bound on the maximal improvement that can
be achieved by any kind of node ordering (see the last line in
Table 11). The HISTORY results are based on a two-dimensional
history table that holds for every city pair the frequency it
contributed to the longest tour. Experiments with chains of
three cities gave only marginal additional improvements, while
occupying more resources (a three-dimensional array).

Much better results of up to 73% node savings are achieved
with a transposition table. While TRANS uses the table entries
only for pruning duplicated states, TRANSSMOVE sorts the
successors of interior nodes according to the retrieved estimate
values. Although this did not yield any further savings in terms
of node expansions, we found TRANS+MOVE to be much
faster, because the computation of the minimum spanning tree
takes more CPU time than a simple table retrieval.

In the best case, TRANS examines only 27% of the nodes
that are visited by IDA*. The savings are better than can be
achieved in the 15-puzzle. This is especially interesting, since
the table entries cannot be used as effectively as in the 15-
puzzle, where further expansion is stopped as soon as an entry
with a value greater or equal to the remaining cost bound is

97

708 IEEE TRANSACTIONS ON PAITERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. I , JULY 1994

I %Nodes
Relative

to

4
1.0 1.13 1.2 1.29 1.71

Heuristic Branching Factor bh

Fig. 5. Relative performance on the 20-city TSP.

retrieved. Such immediate cut offs are not possible in the TSP,
because care must be taken not to prune subtrees containing
a new cost bound for the next iteration. As is always the case
in applications where the cost bound increase is not known a
priori, cut offs are only feasible when the retrieved cost bound
is higher than the temporary candidate for the next cost bound.

Table I1 also shows how further savings are achieved with
the more sophisticated hashing techniques. The TRANS+ RE
HASH variant resolves storage collisions by giving preference
to states encountered in the shallow graph levels near the root.
In addition, it does limited re-hashing (up to a chain length of
3) by moving the lower priority entries to the end of the re-
hashing chain. As a result, the mostly re-expanded nodes at the
shallow tree levels enjoy early occupancy in the transposition
table and a fast retrieval time (due to the shorter chain lengths).
Since these are also the nodes for which the MST computation
is most costly, CPU time is saved even when the retrieved table
value does not permit a cut off.

Fig. 5 illustrates in a more general way the influence of
the tree characteristics on the relative search efficiency. The
data shown is that from Table 11, but extended to include
information from all four domain intervals considered. Instead
of plotting the performance relative to the domain of the city
coordinates, we took the heuristic branching factor achieved
with the simple IDA* as a performance measure. (In other
words, the shown bh’S of 1.13, 1.20, 1.29, 1.71 correspond
to the city coordinate domains [l, 1001, [l, 751, [l, 501 and

The top graph in Fig. 5 (PV+SORT) illustrates the growing
importance of successor ordering schemes with increasing bh .
This is caused by the larger number of nodes in the last
iteration, which rectify any additional effort invested in sorting
the promising nodes to the beginning of the search. On the
other hand, many of the nodes that are expanded deeper in
graphs with large bh are not contained in the transposition
table, which reduces the relative performance of TRANS and
TRANS-kREHASH-See the two graphs at the bottom of Fig. 5.

Interestingly, the additional transposition table savings in
graphs with low heuristic branching factors are almost exclu-
sively due to node information gathered in previous iterations.
The amount of cycles and transpositions that are detected in

[I, 251.)

*oooll
, 6 = 4

I
I

I
I

I
I

I
I

I

TRANS
* without caching

% Nodes
Relative to

Breadth-First
Search

6 = 3

6 = 2

6 = 1 (IDA*)

1.0 1.5 2.0 2.5 3.0

Heuristic Branching Factor bh

Fig. 6. Effect of more liberal cost-bound increase 6.

the same iteration remains constant over the whole range of
branching factors. This is confirmed by the dashed line in the
middle of Fig. 5 (at about 60%), which depicts the savings
incurred by information gathered in the same iteration. For
these data points, the transposition table has been cleared be-
tween iterations. In total, roughly 40% of the node generations
can be saved by avoiding cycles and transpositions, while an
additional 20 to 40% reduction can be achieved by exploiting
information gathered in previous iterations.

In applications with low heuristic branching factors (like
the TSP) iterative-deepening is clearly not the best solution
method. To minimize repeated node expansions, the cost
bound should be increased by more than the minimal amount
[91, 1151, 1181, [22] , [29]. But by how much should the cost
bound be increased and up to which branching factor is it
beneficial to do so? Fig. 6 presents a numerical analysis of
iterative-deepening search with various cost bound increments
6. We made the following simplifying assumptions:

1) there is one goal node in the solution depth g = 37,3
2) we assume unity arc costs,
3) the solution density does not increase with the search

depth,
4) the heuristic branching factor bh is constant over all

iterations,
5) the cost bound increments 6 remain constant over the

search (we do not allow decreasing or increasing 6).
The data points in Fig. 6 are plotted relative to the node

expansions of a breadth-first search which finds the solution
in the middle of the search frontier in depth 37. Clearly, the
IDA* node count depends on whether the solution depth is
a multiple of the cost bound increment 6. If this is the case,
an optimal solution will be found in the last iteration, while
saving some intermediate iterations. Fig. 6 shows a worst case
situation, where the solution depth g = 37 is a prime. As can
be seen, the larger cost bound increases are only beneficial in

3This solution depth occurred often in the TSP with domain [I] , [751.

REINEFELD AND MARSLAND: ENHANCED ITERATIVE-DEEPENING SEARCH 709

trees with small branching factors (e.g., S = 4 is advantageous
in trees with bh 5 1.5).

In practice, one would use a method that dynamically adjusts
the cost bound increments to the heuristic branching factor,
so that a sufficient number of new nodes are expanded in
successive iterations (e.g., IDA*-CR, [22]). Other practical
alternatives include hybrid iterative-deepening and depth-first
branch-and-bound algorithms like DFS* [18] and MIDA* [29].

VII. CONCLUSION

function DepthFirstSearch (n, bound): integer;
var

{ returns next cost hound }
{ called by IterativeDeepening, see Fig. 1 }

new-bound, ttdound, i , t: integer;
next: node;
succ: array [l..maxwidth] of node;
b: array [l..max.width] of integer;

{ successor nodes }
{ successor's cost hounds }

begin
if h(n) = 0 then begin

end;
new-bound := 00;

for each successor n, of n do begin
succ[i] := n,;
if retrieveft (n,, tt-bound) then

solved := true; return (0); { found a solution: return cost)

{ if n, is in transposition table }
We adaDted commonlv used search techniaues from b[i] := c(n, n,) + tt-bound; { . . . then use revised cost value }

else
b[z] := c(n,n,) + h(n,); the domain of adversary game-tree searching to single-

agent iterative-deepening search. We found that avoiding end;
{ . . . else use heuristic estimate }

transpositions and cycles is more lucrative than any kind of
operator pre-sorting. The best combination of the proposed
techniques, namely a transposition table with node successor
ordering information, reduces the size of the search graph
by one half (in the 15-puzzle) or even by three quarters (in
the TSP). This is possible because the saved information can
be used to detect duplicate states and to guide the expansion
process to the most promising direction in the search tree. In
both applications, our TRANS+MOVE enhancement generates
fewer nodes than a perfectly informed (nondeterministic)
IDA*, which runs through all iterations zl,z2,...,in-1 and e

sort (succ[], b[]);
for i = 1 t o last successor of n do begin

{ sort succ and b to increasing bound values n[] }

{ recurse)

{ search deeper)
next := succ[i];
if b[i] 5 bound then

else

if solved then return (t);
new-bound := min (new-bmmd,t);

t := c(n,next) + DepthFirstSearch (nest, bound - c(n, next));

t := b[i]; { cutoff }

{ compute next iteration's bound }

{ save lowest hound of n in transposition table }
{ return next iteration's cost bound }

end;
save-tt (n, newbound);
return (new-bound);

md:
finds a goal node at the very first node expansion in the final
iteration in.

The 15-puzzle has proved to be an especially difficult appli-
cation to improve, from a CPU-time performance standpoint,
because of cheap operator costs and low branching factors.
Although the simple successor ordering of SORT did not pay
off, the other heuristics, namely PV, TRANS and MOVE, reduce
the search time by 13, 24 and 37%, respectively. These results
compare favorably to those of others [25, Table 21, [2], [12],
[211, P21, [W .

In practice, one would first include the PV-heuristic, because
of its negligible space and time overheads. It simply uses
standard information on the best subtree that is needed to
determine the solution path. If memory space is available, one
would then include a transposition table that holds all states
seen during the search. Since a table access needs only unit
time, it does not affect the time complexity of the program.

Transposition tables are most beneficial in applications
with measurable operator costs, like the traveling salesman
problem. Depending on the range of inter-city distance values,
a transposition table of 256 K entries reduces the search time
by as much as 72%. These CPU time savings correspond to
a node reduction of 73%, which justifies our assumption that
unsuccessful table accesses are easily compensated by the fast
successful retrievals.

Another favorable aspect of the hashing technique is that it
can be efficiently applied in parallel environments. With tree
structured data types, a whole path must be sent to identify a
single node, while hashing techniques need only transfer one
hash key (that usually consists of one memory word only).
Thus, hashing techniques make it possible to profit from the
computations of the other processes.

Fig. 7. Iterative-Deepening A* with transposition table and cost revision.

Ease of implementation and maintenance is also a key
issue. In our experience [19], hashing tables are much easier
to implement and debug than the tree-structured data types
of A* [3] and other IDA* variants [2], [21], [25]. In some
way the transposition table plays a role similar to A*'s Open
and Closed lists, with greater flexibility and speed, but with
some risk of omission. When space restrictions are tight, table
overloading might become a problem. It is then customary to
overwrite the older information from deeper tree levels. The
rationale is to give preference to the precious information on
nodes near the root, where more CPU-time has been spent to
search the emanating subtree.

APPENDIX

Fig. 7 shows how to use a transposition table and cost
revision in depth first search.

ACKNOWLEDGMENT

Foundations to this work were laid during the first author's
stay at the University of Alberta as a Killam Postdoctoral
Fellow. There he benefited from discussions with J. Schaeffer
and his joint work on parallel IDA* implementations. We
are also indebted to A. Sharpe for improvements to our
hash-transposition algorithm, and to the referees for their
constructive comments.

710 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. 7, JULY 1994

REFERENCES

S . G. Akl and M. M. Newborn, “The principal continuation and the killer
heuristic,’’ in Proc. ACM Nut. Conf., Seattle, WA, 1977, pp. 466-473.
P. P. Chakrabarti, S . Ghose, A. Acharya, and S . C. de Sarkar, “Heuristic
search in restricted memory,” Artificial Intell., vol. 41, pp. 197-221,
1989/90.
P. E. Hart, N. J. Nilsson and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. SSC-4, no. 2, pp. 10G107, 1968.
M. Held and R. M. Karp, “The traveling salesman problem and minimal
spanning trees,” Operat. Res., vol. 18, pp. 1138-1162, 1970.
__ “The traveling salesman problem and minimal spanning trees:
Part 11,” Math. Progr., vol. 1, 6-25, 1971.
T. Ibaraki, “The power of dominance relations in branch-and-bound
algorithms,” J . Assoc. Comput. Machine, vol. 24, no. 2, pp. 264-279,
1977.
__ “Depth-m search in branch-and-bound algorithms,” Int. J . Com-
put. and Inform. Sri., vol. 7, no. 4, pp. 315-343, 1978.
R. E. Korf, “Depth-first iterative-deepening: An optimal admissible tree
search,’’ Artificial Intell., vol. 27, no. 1, pp. 97-109, 1985.
R. E. Korf, “Optimal path-finding algorithms,” in Search in Artificial
Intelligence, L. Kanal and V. Kumar, Eds. New York: Springer-Verlag,
1988.
J. D. C. Little, K. G. Murty, D. W. Sweeney and G. Karel, “An algorithm
for the traveling salesman problem,” Operat. Res., vol. 11, pp. 972-989,
1963.
A. Mahanti, S . Ghosh, D. S. Nau, A. K. Pal, and L. Kanal, “Performance
of IDA* on trees and graphs,” in 10th Nut. Conf. on Artificial Intell.,
AAAI-92, San Jose, CA, 1992, pp. 539-544.
A. Mahanti, D. S. Nau, S . Ghosh, and L. Kanal, “An efficient iterative
threshold heuristic search algorithm,” Univ. of Maryland, College Park,
Tech. Rep. CS-TR-2853, 1992.
T. A. Marsland, “Computer chess methods,” in Encyclopedia ofArtificia1
Intelligence, 1st ed., E. Shapiro, Ed. New York: Wiley, 1987, pp.
159-171. See also, “Computer chess and search,” in Encyclopedia of
Artificial Intelligence, 2nd ed., 1992, pp. 224-241.
T. A. Marsland, A. Reinefeld, and J. Schaeffer, “Low overhead alterna-
tives to SSS*,” Artificial Intell., vol. 31, pp. 185-199, 1957.
B. G. Patrick, “Binary iterative-deepening A*: An admissible general-
ization of IDA* search,” in Proc. 9th Canadian Con$ on Artificial Intell.
”92, Vancouver, BC, 1992, pp. 54-59.
J. Pearl, Heuristics. Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley: Reading MA, 1984.

[171 C. Powley and R. E. Korf, “Single-agent parallel window search,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 13, no 5 , pp. 466-477, May
1991.

[I81 V. N. Rao, V. Kumar, and R. E. Korf, “Depth-first vs. best-first search,”
in Proc. 9th Nut. Conf. on Artificial Intell. M - 9 1 , Anaheim, CA, 1991,
pp. 434440.

[19] A. Reinefeld, J . Schaeffer, and T. A. Marsland, “Information acquisition
in minimal window search,” in Proc. 9th Int. Joint Conf. on Artificial
Intell., France, 1985, pp. 1040-1043.

[20] A. Reinefeld. “Complete solution of the Eight-Puzzle and the benefit
of node ordering in IDA*,” in Proc. 13th Int. Joint Con$ on Artificial
Intell., ChambCry, 1993, pp. 248-253.

[21] S . Russell, “Efficient memory-bounded search methods,” in Proc. Eu-
ropean Artificial Intell. Con$, Vienna, 1992, pp. 1-5.

[22] U. K. Sarkar, P. P. Chakrabarti, S. Ghose, and S . C. de Sarkar,
“Reducing re-expansions in iterative-deepening search by controlling
cutoff bounds,” Artificial Intell., vol. 50, pp. 207-221, 1991.

[23] J. Schaeffer, “The history heuristic and alpha-beta search enhancements
in practice,” IEEE Trans. Pattern Anal. Machine Intell., vol. 1 1, no. 1 1,
pp. 1203-1212, 1989.

[24] J. J. Scott, “A chess-playing program,” in Machine Intelligence 4 , B.
Melzer and D. Michie, Eds. Edinburgh, Scotland: Edinburgh Univ.
Press, 1969, pp. 255-265.

[25] A. K. Sen and A. Bagchi, “Fast recursive formulation for best-first search
that allow controlled use of memory,” in Proc. 11th Int. Joint Con$ on
Artificial Intell., 1989, pp. 297-302.

[26] D. J. Slate and L. R. Atkin, “Chess 4.5-The Northwestern University
chess program,” in Chess Skill in Man and Machine, P. W. Frey, Ed.
New York: Springer-Verlag, 1977, pp. 82-1 18.

[27] M. E. Stickel and W. M. Tyson, “An analysis of consecutively bounded
depth-first search with applications in automated deduction,” in Proc.
9th Int. Joint Con$ on Artificial Intell., 1985, pp. 1073.-75.

[28] G. C. Stockman, “A minimax algorithm better than alpha-beta?,”
Artificial Intell., vol. 12, no. 2, pp. 179-196, 1979.

[29] B. W. Wah, “MIDA*: An IDA* search with dynamic control,” Tech.
Rep. UILU-ENG-91-2216, CRHC-91-9, Univ. of Illinois, Champaign,
IL, 1991.

[30] A. L. Zobrist, “A new hashing method with applications for game
playing,” Tech. Rep. 88, Univ. of Wisconsin, Madison, WI, 1970.
Reprinted in Int. Comput. Chess Assoc. J., vol. 13, no. 2, pp. 69-73,
1990.

Alexander Reinefeld (S’85-M’8&S’86-M’87) re-
ceived the Infor-ma-tik-Di-plom in 1982 and the
Ph.D degree in 1987, both from the University
of Hamburg, Germany. He spent two years at the
University of Alberta In 1984, he was awarded a
Ph.D. scholarship by the German Academic Ex-
change Service, and in 1987 he received a “Sir
Walton Killam Memonal Post Doctoral Fellowship”
from the University of Alberta.

From 1988 to 1992, he worked as an assistant
professor at the University of Hamburg and as a

free-lance software englneenng consultant. In 1992, he became managing
director of the Paderbom Center for Parallel Computing, Germany. His
research interests include discrete optimization problems and various aspects
of parallel and distnbuted systems

Dr. Reinefeld is a member of ACM and GI (Gesellschaft fur Informatik)

T. Anthony Marsland (S’63-M’68-SM’84) re-
ceived the B.S. degree in honors mathematics from
the University of Nottingham (UK) in 1958 and
Masters and Ph.D. degrees in electrical engineering
from the University of Washington, Seattle, in 1965
and 1967, respectively.

After serving as an Assistant Professor at the
University of Washington for one year and working
as a research scientist at the Bell Laboratories in
New Jersey for two years, he joined the Computing
Science Department at the University of Alberta,

becoming a Full Professor in 1980. He was a McCalla Research Professor
in 1985-86, and has served the Association for Computing Machinery as an
ACM National Lecturer on distributed processing and computer chess. He also
serves on the Intemational Relations Committee of Canada’s Natural Sciences
and Engineering Research Council. His teaching and research interests are in
the area of distributed computation, distributed applications for tree searching
and multiprocessor systems. Much of his experimental work is carried out on
a collection of processors linked to a local area network (Ethemet).

Dr. Marsland has published extensively in journals or conference proceed-
ings, and has written several book chapters. He is a member of CIPS. ACM,
and Sigma Xi.

