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Enhanced Iterative-Deepening Search 
Alexander Reinefeld, Member, IEEE, and T. Anthony Marsland, Senior Member, IEEE 

Abstruct- Iterative-deepening searches mimic a breadth-first 
node expansion with a series of depth-first searches that operate 
with successively extended search horizons. They have been 
proposed as a simple way to reduce the space complexity of best- 
first searches like A* from exponential to linear in the search 
depth. 

But there is more to iterative-deepening than just a reduction 
of storage space. As we show, the search efficiency can be greatly 
improved by exploiting previously gained node information. The 
information management techniques considered here owe much 
to their counterparts from the domain of two-player games, 
namely the use of fast-execution memory functions to guide the 
search. Our methods not only save node expansions, but are also 
faster and easier to implement than previous proposals. 

Zndex Terms- Heuristic search, A* algorithm, depth-first 
iterative-deepening, game trees, computer chess methods, Fifteen 
Puzzle, Traveling Salesman Problem. 

I. INTRODUCTION 

F the brute-force searches, depth-jirst iterative- 0 deepening (DFID) is practical, because it combines 
breadth-first optimality with the low space complexity of 
depth-first search. Its basic idea is as simple as conducting 
a series of independent depth-first (backtracking) searches, 
each with the look-ahead horizon extended by an additional 
tree level. With the iterative approach, DFID is guaranteed to 
find the shortest solution path, just as a breadth-first search 
would. But in contrast to the latter, DFID needs negligible 
memory space. Its space complexity grows only linearly 
with the search depth. 

The origins of iterative-deepening search trace back to the 
late 1960s [24], when programmers sought a reliable mecha- 
nism to control the time consumption of the newly emerging 
toumament chess programs. Rather than blindly committing to 
one direct depth-d search of unpredictable duration, the total 
search task was subdivided into separate depth-first searches 
with successively deepened search horizons 1 , 2 ,  . . . ~ n. This 
allows the search process to halt with a best available answer 
as soon as some time limit is exceeded. 

Even more important are the various memory functions 
that also build upon the iterative-deepening approach. They 
use node information from previous iterations to increase 
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the cutoffs in the current iteration. Among the data that can 
be reused, move ordering and node scoring information is 
of special importance. Various memory functions have been 
invented to store this and other information: refutation or killer 
tables [I], transposition tables [30], [26] and history tables 
[23]. Taken together, the memory functions not only pay for 
themselves by yielding better frontier node evaluations, but 
also produce searches that are faster than a direct depth-d 
search [13]. 

In the mid 1980s, iterative-deepening was refined for heuris- 
tic single-agent searches like A* and AO*. Here, the succes- 
sive iterations do not correspond to increased search depth, 
but to increased cost bounds of the currently investigated path. 
But again, iterative-deepening reduces the space complexity to 
linear while preserving optimality. As a consequence, Korf's 
Iterative-Deepening A* (IDA*) [8] can be applied in domains 
where excessive space requirements cause A* to fail. One such 
application is the 15-puzzle. 

The better space efficiency is paid for by an increased 
number of node expansions. Because IDA* does not retain 
path information from one iteration to the next, the shallow 
tree parts are reexamined several times. Following the same 
lines as in multi-agent search, IDA* (like any iterative search) 
should be improved by using node information of previous 
iterations. 

In this paper, we show how to adapt search enhancements, 
that have been found effective in the domain of two-player 
games to single-agent heuristic search. The techniques include 
node presorting, the use of principal variations, transposi- 
tion and refutation tables and other memory functions [13], 
[ 191. With the best combination of these techniques optimal 
solution paths for the 15-puzzle can be found, while visit- 
ing less than half the nodes seen by pure IDA*. This is 
better than can be achieved with a perfectly informed (and 
hence nondeterministic) IDA* algorithm, one that performs 
an iterative depth-first search up to the penultimate iteration 
and finds a solution node right at the beginning of the 
iteration. 

In practice, speed of computation is more important than the 
number of node expansions. Since memory tables are accessed 
in unit time, the running time of the proposed algorithms is 
almost proportional to the node count. Maximal speedups are 
achieved in applications with time-consuming heuristic esti- 
mation functions. One such example is the traveling salesman 
problem. Here a 73% node reduction (as compared to IDA*) 
speeds up the total runtime by 72%, giving an almost linear 
improvement. This is a remarkable result, considering that 
unsuccessful table accesses must be compensated for by even 
greater savings elsewhere. 
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11. APPLICATIONS 

Heuristic single-agent search techniques can be found in 
applications where a decision tree/graph is built to deter- 
mine the best of several alternatives by searching. Typical 
applications include perception problems, theorem proving, 
robot control, pattern recognition, expert systems and some 
combinatorial optimization problems of Operations Research. 
For our experiments we selected two problem domains that 
build large search graphs and are easy to implement: the 
15-puzzle and the traveling salesman problem. 

A .  The Fifteen-Puzzle 

The 15-puzzle is simple, but has combinatorially large 
problem space of 16!/2 sz 1013 states. It consists of fifteen 
square tiles 1 , 2 , . . . ,  15, located in a square tray of size 
4 x 4. One square, the blank square, is kept empty so that 
an orthogonally adjacent tile can slide into its position-thus 
leaving a blank square at its origin. The problem is to rearrange 
some given initial configuration into a goal configuration 
without lifting one tile over another. 

Although it would seem easy to find any solution to this 
problem, it is much harder to determine a mapping of the given 
initial configuration to the goal configuration with the fewest 
moves. Using IDA*, it takes some hundred millions of node 
generations to solve a random problem instance, when using 
the most popular heuristic estimate function, the Manhattan 
or city-block distance. This estimate is a sum of the minimum 
displacement of each tile from its goal position. As can be 
proved by induction, the Manhattan distance is admissible: It 
never overestimates the distance to the goal configuration. This 
is an important requirement if a heuristic search algorithm is 
to find an optimal( = shortest) path to a goal state. 

B. The Traveling Salesman Problem 

The traveling salesman problem (TSP) refers to the task of 
finding a shortest (or least cost) tour that returns to the starting 
point after visiting all cities in the n-city network only once. 
The TSP is known to be NP-hard, and exact solutions can only 
be obtained for tours involving some hundred cities. 

While the well-known branch-and-bound algorithms of Held 
and Karp [5] or Little et al., [lo] would be among the 
preferred solution techniques for the TSP in practice’, we have 
chosen the method described by Pearl’s book [16, p. IOffl, 
because it builds a graph rather than a tree. It does so by 
successively adding unvisited cities to the end of a temporary 
partial contiguous tour for as long as their cost estimates 
do not exceed the given bound. For our experiments, we 
randomly generated the coordinates of n cities and computed a 
complete symmetric euclidean cost matrix C with components 
cij denoting the (air-) distances between cities i and j .  

As is customary, we used the cost of the minimum spanning 
tree (MST) covering the cities not yet visited as a bounding 

‘ A s  pointed out by Sen and Bagchi 1251, the depth-first node expansion 
strategy of Little’s method can also be adapted to best-first or depth-first 
iterative-deepening. But since the search graph is small and the node expansion 
time is appreciable, there is no point in using IDA* or any of its memory 
variants. 

algorithm IterativeDeepening; 
begin 

bound := h(root); 
repeat 

until soloed; 

{ initial bound is heuristic estimate } 
{ perform iterative-deepening DFS } 

bound := DepthFirstSearch (root, bound); 

end. 

function DepthFirstSearch (n, bound): intr 
begin 

{ returns next cost bound } 

if h(n) = 0 then begin 

end; 
new-bound := 00; 
for each successor n, of n do begin 

if c(n,n,) + h(n,) 5 bound then 

else 

if solved then return (a); 
new-bound := min (new-bound, 6);  

solved := true; return (0); { found a solution: return cost } 

{ search deeper } 
b := c(n, n,) + DepthFirstSearch (n,, bound - c(n, n,)); 

b := c(n, n,) + h(n,); { cutoff } 

{ compute next iteration’s bound } 

{ return next iteration’s bound } 
end; 
return (new-bound); 

end; 

Fig. 1 .  Iterative-Deepening A*. 

function for the completion cost of the current partial tour. 
More precisely, complete a I-tree [4] that is connected via two 
extra edges to the first and the last city of the partial tour. Using 
Prim’s algorithm, a 1-tree of n cities is computed in O(n2) 
operations. Hence, the node expansion time is substantial, 
making the TSP an ideal test suite supplement to the 15-puzzle. 

111. ITERATIVE-DEEPENING A* 

Iterative-Deepening A*, IDA* for short, performs a series of 
cost-bounded depth-first searches with successively increased 
cost thresholds. The total cost f(n) of a node n is made up 
of g(n), the cost already spent in reaching that node, plus 
h(n),  the estimated cost of the path to the nearest goal. At 
each iteration, IDA* does the search, cutting off all nodes that 
exceed a fixed cost bound. At the beginning, the cost bound is 
set to the heuristic estimate of the initial state, h(root). Then, 
for each iteration, the bound is increased to the minimum path 
value that exceeds the previous bound. 

Fig. 1 gives a sketch of IDA*. The algorithm consists of a 
main IterativeDeepening routine, that sets up the cost bounds 
for the single iterations, and a DepthFirstSearch function, 
that actually does the search. The maximum search depth 
is controlled by the parameter bound. When the estimated 
solution cost c(n ,  ni) +h(ni) of a path going from node n via 
successor n, to a (yet unknown) goal node does not exceed the 
current bound, the search is deepened by recursively calling 
DepthFirstSearch. Otherwise, subtree n, is cut off and the node 
expansion continues with the next successor ni+l. 

Of all path values that exceed the current bound, the smallest 
is used as a cost bound for the next iteration. It is computed 
by recursively backing up the cost values of all subtrees 
originating in the current node and storing the minimum value 
in the variable new-bound. Note, that these backed-up values 
are revised cost bounds, which are usually higher-and thus 
more valuable-than a direct heuristic estimate. In the simple 
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IDA* algorithm shown in Fig. I ,  the revised cost bounds 
are only used to determine the cost threshold for the next 
iteration. In the Appendix (Fig. 7), the cost thresholds are used 
in conjunction with a transposition table, where they can also 
serve to increase the cut offs. 

With an admissible heuristic estimate function (i.e., one that 
never overestimates), IDA* is guaranteed to find the shortest 
solution path. Moreover, it has been proved [SI, [ I l l ,  that 
IDA* obeys the same asymptotic branching factor as A*, if 
the number of nodes grows exponentially with the solution 
depth. This growth rate is called the heuristic branching 
factor bh (see Section VI-B). On the average IDA* requires 
b h / ( b h  - 1) times as many operations as A* [27]. While 
the search overhead diminishes with increasing bh (e.g., 11% 
overhead at bh = 10,1% at bh = loo), IDA* benefits from the 
elimination of unnecessary node reexaminations in the shallow 
tree parts (all iterations before the last). 

IV. RELATED LIMITED-MEMORY ALGORITHMS 

Two algorithms have been proposed to fill the gap between 
the memory-intensive A* on one hand and the faster, but more 
node-intensive, IDA* on the other. 

The recursive best-first search algorithm MREC of Sen and 
Bagchi [25] might best be described as an amalgamation of 
IDA* and A*. Like IDA*, MREC examines all nodes by 
iterative-deepening until a goal is found. Like A*, MREC 
grows an explicit search graph, that contains all nodes of 
the first few levels, until the available memory is exhausted. 
Unfortunately, the memory usage is static. Once occupied 
by an initial explicit subgraph, the storage space cannot be 
re-used by other, more valuable, nodes that might be found 
at a later time. Moreover, MREC starts all iterations at the 
root node, irrespective of the explicit search graph that has 
already been built [25, p. 2981. The repeated traversal of 
the explicit graph is the price paid for the missing Open 
List2. Even so, one would expect a graph traversal to be 
much faster than generating new nodes and linking them to 
the explicit search graph. Unfortunately, this is not the case 
for the 15-puzzle with its cheap operator generation, and so 
Sen and Bagchi report poor CPU-time results [25, p. 2991. 
They also achieved only negligible (1%) node reductions as 
compared to IDA*, because their implementation builds a tree 
rather than a graph and does not check for duplicate nodes. 
On the other hand, MREC-implementations that eliminate 
transpositions were also found to be slow (again compared 
to IDA*), because of the costly maintenance of the explicit 
search graph. 

Chakrabarti et al. [2] proposed MA*, an iterative-deepening 
variant of Ibaraki’s Depth-m Search [7]. Similar to MREC, 
MA* also grows an explicit search graph until the available 
memory space is filled, but dynamically re-assigns memory 
space to other states according to some merit value. When 

2The repeated traversal of the explicit graph can be avoided by connecting 
the frontier nodes in a linked list, similar to A*’s Open list. But even then the 
savings would be negligible, because the list must be sorted before each new 
iteration. Only the backing up of the revised estimate values in the explicit 
search graph can be saved. 

the storage space is exhausted, MA* is not confined to a pre- 
determined node expansion sequence, but starts a best-first 
search on the tip nodes of the explicit graph. The node selec- 
tion is based on the backed-up cost values of the pruned nodes, 
which are more reliable than the direct heuristic estimates. 
Although the favorable results of Chakrabarti et al. were found 
to be erroneous (they “inadvertently compared IDA*’s node 
generation figures with MA*(O)’s node expansion figures” [ 12, 
p. 2]), other researchers built successfully on the basic ideas 
of MA*. Iterative Threshold Search (ITS) by Mahanti et al. 
[ 121 employs a fast node generation scheme (like IDA*) while 
making use of the available memory (like MA*). Another 
proposal, SMA* by Russell [21], uses the “pathmax” node 
information of the backed up f-values. 

Still, these methods are much slower than the memory- 
functions proposed here, while generating a comparable 
amount of nodes. This is because the others all operate on an 
explicit search graph, whose construction, maintenance and 
traversal is a time-consuming task. In each step, a tip node 
n with lowest f(n)-value is selected for further expansion. 
Since the explicit graph must be large to be effective, the 
node selection time dominates the runtime of the algorithm. 
From experiments with Stockman’s best-first SSS*-algorithm 
[28] it is known that a reduced node count seldomly pays 
for the increased memory management costs [19]. Our hash 
transposition techniques, in contrast, are easier to implement 
and operate in unit time while retaining a similar node-count 
performance (cf. [ 141). 

Aside from these memory-bound variants, there has been a 
flurry of proposals, that attempt to reduce the search overhead 
by allowing a more liberal increase of the cost bound between 
iterations. Such methods include Stickel and Tyson’s evenly 
bounded depth-first search [27], Sarkar et al.’s iterative- 
deepening search with controlled re-expansion IDA*_CR [22], 
and the hybrid iterative-deepening depth-first branch-and- 
bound variants DFS* [18] by Rao et al. and Wah’s MIDA* 
[29]. All these schemes attempt to reduce the search overhead 
by increasing the cost bound by more than the minimal value. 
As a consequence, node expansion cannot be stopped at the 
first solution, but must continue (possibly with a reduced cost 
bound) until all shorter paths have been checked for cheaper 
solutions. However, these systems can be modified to retum 
quickly with a (possibly nonoptimal) solution, one that is 
known to lie within an €-range from optimality. 

v .  IMPROVED INFORMATION MANAGEMENT 

The enhancements that exploit node information gathered 
in the process of iterative-deepening follow two different 
schemes: 1) node ordering, and 2) avoidance of reexpansions. 

A .  Strategies for Trees: Node Ordering Heuristics 

Node ordering refers to the dynamic reordering of node 
successors. It speeds up the last iteration (where the goal is 
found) by investigating the most plausible successors first, but 
no savings are achieved in the shallower iterations. There are 
three ordering schemes of interest: 
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SORT: The simplest type of node ordering works without 
node information from previous iterations and has little space 
overhead of O(7ud). It is based on rearranging the successors 
ni of interior nodes ri in increasing order of their heuristic 
estimates h(ni). Successors with low estimates are visited first, 
with the intention of reducing the distance to the goal. Like 
the well-known hill climbing techniques, SORT adds a local 
best-first component to the otherwise random heuristic search. 
In the 15-puzzle, SORT works much like a human player, who 
initially tries to shift tiles as near as possible to their destination 
positions. 

Although this scheme helps humans in their search for 
nonoptimal solutions, the savings achieved in (optimal) IDA* 
search rarely compensate for the additional overhead [17 p. 
47 I]. This is because of the limited information horizon that 
the successor pre-sorting is based on. More sophisticated 
variants of SORT work with revised cost values of deeper 
tree levels (see the T R A N S ~ M O V E  variant in Section V-B), 
or rearrange the nodes of a whole search frontier 1171. 

PV: When searching adversary game trees like chess or 
checkers, each iteration yields w best paths starting at the 
root node. One of them, the principal variation, is the move 
sequence actually chosen if the players follow the minimax 
principle. The other 11) - 1 paths are called refutation lines 
[ I ] ,  [ 131; they serve to prove the inferiority of their particular 
root move. Current principal variation and refutation lines are 
re-expanded first during each new iteration. 

In single-agent search problems, the refutation line idea is 
not directly applicable, because there are no opponent moves 
that could be refuted. Only the principal variation line (PV) 
can be employed to investigate the most promising path first. 
We extend the PV heuristic by saving a whole subtree of paths 
from the root, instead of only the best available continuation. 
The leaf nodes of this subtree all lie at the same maximum 
distance from the start configuration. Because the search is 
cost-bounded, these leaves lie closest to the goal, that is, they 
have the largest 9- and consequently lowest h-values. 

HISTORY: The history heuristic 1231 prove useful in the 
domain of two player games. It achieves its performance 
by maintaining a “score” table, called the history table, for 
every move seen in the search graph. Note, that HISTORY is 
the only heuristic that is based on sorting moves (operators) 
rather than nodes (states). All moves that are applicable in a 
given position are examined in order of their previous success. 
Compared to SORT. the history heuristic is less sensitive to the 
current context, yet it provides more reliable information on 
the success of the operators. In addition, HISTORY does not 
depend on domain specific knowledge (like heuristic estimate 
functions). It simply accumulates success scores from the 
previously expanded subtrees. 

For the IS-puzzle, one needs a three-dimensional array that 
holds a measure of the goodness of a move for each possible 
tile, each source position and each move direction. This gives 
16 (tiles) x 16 (positions) x 4 (max. move directions) = 
1024 move scores. In the traveling salesman problem, a two 
dimensional history table of size 71 x n is needed, where n is 
the number of cities on the tour. As a measure for the goodness 
of a move, we counted the number of occurrences the specific 

a 9 1011 WIlR yJ 
5 1  5 1  

Fig. 2. Shortest move transposition in the AV-puzzle. 

move led to the deepest subtree (i.e., the subtree that came 
closest to the goal). 

B .  Advanced Techniques in Graphs: Avoiding Re-Expansions 

Most applications spawn a decision graph (with multiple 
paths ending in the same position) rather than a tree. In 
such cases, memory functions should be employed to avoid 
unnecessary re-expansions of previously visited nodes. The 
utilization of memory tables is twofold: First, they are used 
to eliminate cycles and transpositions within single iterations, 
and second, they serve to cache node information from one 
iteration to the next. 

A move cycle is a sequence of operators, which, after going 
through some intermediate states, finally retums to the starting 
state. In general, move cycles can be eliminated with a stack 
of size g that holds all nodes on the path from the root to 
the current node. In the 15-puzzle, however, cycle elimination 
does not pay off, because closed move cycles occur only 
seldomly (less than 0.03% of the nodes lie on cycles, after 
the trivial 2-move cycle is removed by the move generator). 
As an example, the shortest cycle (see Fig. 2, which can be 
viewed as a cycle when when reversing one line of arrows) 
consists of 12 moves. Since cycles contain inferior nodes with 
high goal distances h, the total expansion cost g + h usually 
exceeds the cost threshold before completion. Note, that in 
the traveling salesman problem all cycles are automatically 
eliminated by the successor generator. 

TRANS: Move transpositions are more common. They arise 
when different paths end in the same position, see Fig. 2.  In the 
15-puzzle, transpositions occur in search depths 2 6. They can 
be traced with a transposition table [30] that (ideally) holds 
a representation of every visited position, plus the cost bound 
to which the position has been searched. When the current 
position is found in the table, its subtree can be pruned if the 
remaining cost bound is less or equal to the corresponding 
bound retrieved from the table. Pseudo code in the Appendix 
(Fig. 7) illustrates the use of a transposition table in iterative- 
deepening search. Note that revised cost values (back-up 
values of deeper tree levels) are stored in the transposition 
table, sometimes allowing cut offs, even when the remaining 
search depth is deeper than that given in the table. 

Because of its fast access time, a hashing technique is 
customarily used for implementing large transposition tables. 
The initial hash access index is a function of the board 
configuration with all redundant information removed. In 
the 15-puzzle, it includes the positions of all tiles on the 
board, whereas in the traveling salesman problem the index 
is a function of the subset of the remaining cities plus the 
last visited city. Note, that this scheme allows pruning by 
dominance [6], that is, other partial tours covering the same 
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cities in a different order (but with the same first and last city) 
are cut off. 

Transposition tables should be allocated as much space as 
possible. (We used 256 K entries in both the IS-puzzle and 
TSP applications.) As the table gets filled, collisions occur. 
But old information is only overwritten if the current position 
has been searched more deeply. 

TRANS+MOVE: When the current position is found in the 
transposition table, but has been searched to an insufficient 
depth, the formerly best move (the one yielding the longest 
path) is retrieved from the table and tried first. Apart from 
selecting promising moves first, this approach has the ad- 
ditional advantage that information about the next position 
will probably also be held in the table. Thus, complete sub- 
variations are descended with minimal effort. 

In the traveling salesman problem, move pre-sorting is based 
on the successor values stored in the table, because a table 
access is faster than the computation of the minimum spanning 
tree (our heuristic estimate function). 

VI. EXPERIMENTAL RESULTS 
The performance of the algorithms has been empirically 

evaluated using the 15-puzzle and the traveling salesman 
problem. 

A. The Fifteen-Puzzle 

For the 15-puzzle, we used Korf’s selection of one hundred 
randomly generated problem instances as a test suite [SI. 
To ensure that the hard problems with high node counts 
do not dominate the results, we computed the mean of the 
percentage difference relative to Korf‘s published solutions. 
Our replication of Korf‘s experiment identified three cases of 
differing node counts (presumably due to typographical errors 
in the original presentation [S, p. 1061): 

No. Korf Our Version Difference 
~ ~~ 

22 750,746,755 750,745,755 - 1,000 

88 6,009,130,748 6,320,047,980 +3 10,9 17,232 

89 1 6 6 ~ 7  I ,097 166,57 1,02 1 -76 

In all, ten different combinations of enhancements were 
tried and the results from six of them are presented. Table I 
gives the average number of node generations (with standard 
deviation 0) and the relative CPU time consumption of our 
implementation. All data is normalized to that of pure IDA*. 

As expected, the node ordering heuristics (SORT, PV and 
HISTORY) are of limited use, because they only reduce the 
search effort of the final iteration. Table I shows, that the pre- 
sorting of successor nodes according to increasing heuristic 
estimates (SORT ) does not pay off-neither in terms of node 
expansions, nor in terms of CPU time. A quick calculation 
reveals that SORT favors board configurations with the blank 
square being either in an edge or border position (Fig. 3), 
because these configurations enjoy (statistically) lower h- 
values: 

el,. . . , e4: edge position 
bl ,  . . . , bs: border position 

Fig. 3 .  Tile positions in the 15-puzzle 

TABLE I 
EMPIRICAL RESULTS OX THE 15-PUZZLE, 100 PROBLEMS BY KORF [8] 

Algorithmn Nodes Time 

IDA* 100 100 
SORT 99 42 105 

HISTORY 94 48 108 
TRANS 53 6 76 
TRANS+MOVE 46 28 63 
IDA* (iter. 1 to R - 1) 54 26 

PV 86 52 87 

Let the blank be located in the center position cl .  For 
each adjacent field b3, b l ,  c2. c3, we calculate the probability 
that SORT will first move the blank to that field, because the 
resulting configuration has a lower heuristic estimate. Or, the 
other way around, we enumerate for each source field all tiles 
that reduce the heuristic distance: 

b3: When a tile moves from b3 to c1 the heuristic distance 
reduces by 1 in 12 out of 15 cases (because the tile’s 
goal square is in the rightmost 3 x 4 block). 

bl: When a tile moves from bl to c1 the heuristic distance 
reduces by 1 in 12 out of 15 cases (because the tile’s 
goal square is in the lower 4 x 3 block). 

cp: When a tile moves from cp to c1 the heuristic distance 
reduces by 1 in 7 out of 15 cases (because the tile’s 
goal square is in the left 2 x 4 block). 

cy: When a tile moves from cy to c1 the heuristic distance 
reduces by 1 in 7 out of 1.5 cases (because the tile’s 
goal square is in the upper 4 x 2 block). 

In summary, there are 24(= 12 + 12) out of a total of 
38(= 12 + 12 + 7 + 7) cases, where the blank will be moved 
from c1 to a boarder position ( b g  or b l )  first. This gives a total 
of 24/38 = 63%. The chances vary slightly for all four center 
positions (because of the asymmetry caused by the destination 
square of the blank), but they are all between 58% and 63%, 
which is well above average. Likewise, we calculate chances 
between 44% and 55% for a blank to be first moved from a 
boarder position b, into the adjacent edge e3, which is also 
significantly higher than the expected random 33% chance. 

On one hand, configurations with a blank tile in an outer 
position have lower mobility and are thus less desirable. But 
on the other, fewer moves are possible in such configurations, 
which reduces the size of the emanating subtree. It seems that 
the positive and negative effects of SORT just balance each 
other, leaving no net gain [ 17, p. 4711. This is no surprise when 
considering the limited information horizon that node ordering 
is based on. We therefore implemented an extended sorting 
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I 

scheme that works on a deeper (two level) lookahead. But it 
gave only marginal additional improvements while requiring 
more CPU-time. Better results are achieved when the pre- 
sorting is based on previously acquired node values of deeper 
tree levels, see TRANSS-MOVE. 

The PV heuristic is more effective than SORT: On the 
average, 14% of the node expansions are saved by searching 
the longest paths first (see Table I), which confirms recent 
results on an exhaustive evaluation of the 8-puzzle [20]. How- 
ever, the savings exhibit high variability. In some instances, 
the principal variation subtrees lead directly to the goal, 
whereas in other cases the PV-variant examines more nodes 
than the original IDA*. Note, that the PV heuristic does not 
involve time-consuming operations. It comes as a by-product 
of the search for an optimal path. Thus, any savings in the 
number of node expansions directly speeds up the execution 
time. 

The HISTORY heuristic saves only a meager 6% of the node 
expansions, irrespective of the problem size. Considering its 
remarkable success in the domain of chess [23], one would 
have expected a much better result. But the two domains differ 
in several respects. First, in chess, only a small fraction of 
the total game tree is searched, so that the examined positions 
obey similar properties. Hence, a chess move that once caused 
a cutoff will probably be effective whenever it can be applied 
in the future. This is not the case in the 15-puzzle, where board 
configurations are widely different, because the search depths 
(average of 53 moves) are greater. 

Second, the 15-puzzle lacks clear criteria for measuring the 
merit of a move, thus using the path lengths seems to be 
an obvious choice. But in our experiments, it tums out that 
many paths end at the same length, and hence a finer grained 
secondary measure is needed. For example, something like a 
chess evaluation function, which retains some secondary good 
features, even though this might reduce the effectiveness of 
IDA*, should be used. 

With a transposition table (TRANS), IDA* consistently ex- 
amines fewer nodes in every single problem instance, yielding 
an average node count reduction of 47%. This is more than 
the 35% savings achieved in the 8-puzzle [20], because the 
pruned subtrees are deeper. More interestingly, no signs of 
table overloading were spotted in the hard 15-puzzle problems 
with large search trees. On the contrary: the performance 
of the transposition table seems to increase with growing 
problem size. This is because, on the one hand, there are more 
transpositions and cycles in deeper search trees, and on the 
other, many more nodes are eliminated by every single cutoff. 
In practice, the low standard deviation is another favorable 
aspect of TRANS, because one can expect an almost constant 
efficiency gain by nearly one half for every problem. 

Additional savings can be achieved by first expanding the 
best move stored in the transposition table (TRANS+MOVE). 
Generally, the best move is a good choice. In six problem 
instances, however, the best move failed so miserably, that 
slightly more nodes were searched than with the original IDA*. 
The erratic behavior of these few cases results in a high 
standard deviation, and is a typical property of tree pruning 
systems. 

140 h 

?;at: 8 0 1  

TRANS 
TRANS~HISTORY 

- -  1 , y T ; T ~ ~ ~ ~ + M ~ ~ ~  

20 
5 20% 21.40% 4160% 61.80% 2 81% 

Proportion of Nodes Searched in the Last Iteration 

Fig. 4. Relative performance of IDA* enhancements on the 15-puzzle. 

The last line of Table I gives the average number of node 
expansions in all iterations excluding the last. This number 
corresponds to the best performance, that could be achieved 
with a perfectly informed node ordering mechanism, one that 
finds the goal node right at the beginning of the last iteration. 
Viewed in this light, the combinations involving TRANS look 
even more favorable since they search fewer nodes than even 
this optimally informed IDA*. 

These results are telling enough, but Fig. 4 presents the data 
in a graphical form and shows more clearly how the use of a 
transposition table is the one mechanism that is consistently 
effective. Here, Korf's hundred random problem instances 
are grouped into five sets (of increasing order of difficulty), 
defined by the proportion of the nodes searched in the goal 
iteration. The trees in the first problem set (0-20%) are already 
relatively well ordered for the simple IDA* and it seems hard 
to achieve further savings with any of the move ordering 
heuristics. On the contrary: in their attempt to improve the 
expansion order, HISTORY, SORT and PV often expand more 
nodes in the end. Only when the proportion of the goal iteration 
nodes is above 40% do these techniques become effective. 

Schemes involving a hash table are almost equally effective 
over the whole range of problems. A simple transposition 
table (TRANS) saves about half the node expansions, while 
the successor ordering techniques TRANSSMOVE and HISTORY 
become even more effective when the tree is poorly ordered. In 
practice, based on Fig. 4, one would use the TRANS+MOVE 
combination. 

B .  The Traveling Salesman Problem 

At first sight, the TSP seems to be more suited to iterative- 
deepening search, because more successor-cities must be con- 
sidered in the interior nodes of the TSP search graph than 
there are move choices in the 15-puzzle. From this, one should 
expect the node count to grow faster between iterations, which 
in turn should reduce the overhead incurred by re-expanding 
the shallow tree parts. But, as it tums out, the opposite is true. 
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In the following, we distinguish two types of branching 
factors. First, the edge branching factor be is defined as the 
average number of operators (edges) that are applicable to 
a state (node) of the search graph. It can be determined 
by computing the ratio of the total move generations to the 
number of interior (=nonterminal) nodes. 

For the n-city TSP, we derive a lower bound of the 
edge branching factor by counting the node successors of 
an arbitrary path in the search graph. At the root node, 
there exist n - 1 successors, at the first level n - 2, at the 
second n - 3, and so on, up to k successors at the last 
(cut off) level, where k is the number of the still unvis- 
ited cities. For the longest path (the solution path) we have 
[(n - 1) + (n  - 2) + . . . + 3 + 2 + 1 + 1]/n M n/2. Since 
all other paths in the search graph are incomplete, n/2 gives a 
lower bound on the edge branching factor of the n-city TSP. 

For the 15-puzzle, the edge branching factor is be M 2. 
This number is derived directly from Fig. 3 by summing over 
all possible tile positions the number of move choices and 
dividing by 16 (that is, 48/16 = 3), and then adjusting for the 
back move by subtracting 1. Hence, be M 2.  In practice, be is 
marginally higher, because there is no back move in the initial 
position and because the blank is more likely to be located in 
one of the four center positions. 

The second important parameter, the heuristic branching 
factor bh ,  measures how many new nodes are generated when 
searching with the next larger cost bound. It is defined as 
the average node ratio of two consecutive iterations, bh = 
nodes,/nodes,-l. We include in the computation only the 
shallow iterations 21, . . . , because in the last iteration 
(where the goal is found) the node count depends much on 
the expansion order and is therefore highly variable. Clearly, 
bh depends on the quality of the heuristic estimate function 
and the efficiency of the search method. 

For the 15-puzzle, we determined bh = 6.68 (with U = 
1.77) by running IDA* on Korf's selection of one hundred ran- 
dom problem instances. This value is sufficiently high to allow 
effective use of iterative-deepening techniques. Moreover, the 
15-puzzle is one of the rare applications with bh > be, which 
further increases the effectiveness of IDA* as compared to 
other search methods. The heuristic branching factor is this 
big, because an increase of the cost bound by 2 (which is the 
only possible increase between iterations) allows all nodes at a 
search frontier to be expanded by at least one extra level-and 
some of them much more. 

In the TSP, by contrast, the increase in the cost bound 
between iterations is not fixed to a predetermined value. Most 
often the cost bound is raised by a small amount only, allowing 
extension of only few frontier nodes in the next iteration. This 
results in a heuristic branching factor that is much lower than 
the edge branching factor. The exact magnitude of bh depends 
on the domain of the inter-city distances. In the extreme case, 
that is with inter-city distances drawn from the real numbers, 
only one frontier node (the one that gave rise to the temporary 
iteration's cost bound) is expanded in every new iteration. 
Then, the heuristic branching factor is close to 1 and iterative- 
deepening is not efficient [18], [22] .  The problem might be 
overcome by increasing the cost bound by more than the 

TABLE I1 
RELATIVE PERFORMANCE ON THE ~WITY-TSP, 50 PROBLEMS 

~ ~~~ 

Algorithmn Domain [ 1,501 Domain [ 1,1001 

IDA* 100 100 100 100 
PV+SORT 95 95 98 99 
HISTORY 95 95 99 99 
TRANS 36 38 21 28 
TRANS+MOVE 36 31 21 28 
TRANS+REHASH 28 30 19 20 
IDA*, i l .  i , - l  92 91 

Nodes Time Nodes Time 

minimum value that exceeded the previous bound. But this 
approach could return sub-optimal solutions, unless special 
provision is taken. 

The heuristic branching factor can be controlled in the range 
1 5 bh 5 be by choosing suitable domains, from which 
the inter-city distances are drawn. This makes the TSP an 
ideal vehicle for studying the effectiveness of the proposed 
IDA* enhancements under various bh. In our experiments, we 
used city coordinates that have been randomly drawn from 
the integer intervals [l, 251, [l, 501, [l, 751 and [l, 1001. This 
results in heuristic branching factors (of the simple IDA*) 
ranging from 1.71, 1.29, 1.20 to 1.13, respectively. A total of 
fifty 20-city problems were solved for each algorithdinterval 
combination. All interconnections are included in the network, 
and the traveling salesman problem is complete, symmetric 
and euclidean. As is customary, we used the minimum span- 
ning tree [4] of the remaining cities to estimate the completion 
cost of the partial tour. 

Table I1 shows the experimental results with city coordinates 
drawn from the intervals [l, 501 and [l, 1001. The perfor- 
mance is given relative to IDA* in terms of node expansions 
and CPU time consumption. As can be seen, neither of 
the node ordering heuristics (PVSSORT or HISTORY) yields 
substantial performance improvements. This is not surprising, 
since only 8% of the total nodes are visited in the last iteration, 
yielding an upper bound on the maximal improvement that can 
be achieved by any kind of node ordering (see the last line in 
Table 11). The HISTORY results are based on a two-dimensional 
history table that holds for every city pair the frequency it 
contributed to the longest tour. Experiments with chains of 
three cities gave only marginal additional improvements, while 
occupying more resources (a three-dimensional array). 

Much better results of up to 73% node savings are achieved 
with a transposition table. While TRANS uses the table entries 
only for pruning duplicated states, TRANSSMOVE sorts the 
successors of interior nodes according to the retrieved estimate 
values. Although this did not yield any further savings in terms 
of node expansions, we found TRANS+MOVE to be much 
faster, because the computation of the minimum spanning tree 
takes more CPU time than a simple table retrieval. 

In the best case, TRANS examines only 27% of the nodes 
that are visited by IDA*. The savings are better than can be 
achieved in the 15-puzzle. This is especially interesting, since 
the table entries cannot be used as effectively as in the 15- 
puzzle, where further expansion is stopped as soon as an entry 
with a value greater or equal to the remaining cost bound is 
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I %Nodes 
Relative 

to 

4 
1.0 1.13 1.2 1.29 1.71 

Heuristic Branching Factor bh 

Fig. 5. Relative performance on the 20-city TSP. 

retrieved. Such immediate cut offs are not possible in the TSP, 
because care must be taken not to prune subtrees containing 
a new cost bound for the next iteration. As is always the case 
in applications where the cost bound increase is not known a 
priori, cut offs are only feasible when the retrieved cost bound 
is higher than the temporary candidate for the next cost bound. 

Table I1 also shows how further savings are achieved with 
the more sophisticated hashing techniques. The TRANS+ RE 
HASH variant resolves storage collisions by giving preference 
to states encountered in the shallow graph levels near the root. 
In addition, it does limited re-hashing (up to a chain length of 
3) by moving the lower priority entries to the end of the re- 
hashing chain. As a result, the mostly re-expanded nodes at the 
shallow tree levels enjoy early occupancy in the transposition 
table and a fast retrieval time (due to the shorter chain lengths). 
Since these are also the nodes for which the MST computation 
is most costly, CPU time is saved even when the retrieved table 
value does not permit a cut off. 

Fig. 5 illustrates in a more general way the influence of 
the tree characteristics on the relative search efficiency. The 
data shown is that from Table 11, but extended to include 
information from all four domain intervals considered. Instead 
of plotting the performance relative to the domain of the city 
coordinates, we took the heuristic branching factor achieved 
with the simple IDA* as a performance measure. (In other 
words, the shown bh’S of 1.13, 1.20, 1.29, 1.71 correspond 
to the city coordinate domains [l, 1001, [l, 751, [l, 501 and 

The top graph in Fig. 5 (PV+SORT) illustrates the growing 
importance of successor ordering schemes with increasing bh . 
This is caused by the larger number of nodes in the last 
iteration, which rectify any additional effort invested in sorting 
the promising nodes to the beginning of the search. On the 
other hand, many of the nodes that are expanded deeper in 
graphs with large bh are not contained in the transposition 
table, which reduces the relative performance of TRANS and 
TRANS-kREHASH-See the two graphs at the bottom of Fig. 5. 

Interestingly, the additional transposition table savings in 
graphs with low heuristic branching factors are almost exclu- 
sively due to node information gathered in previous iterations. 
The amount of cycles and transpositions that are detected in 

[I, 251.) 

*oooll 
, 6 = 4  

I 
I 

I 
I 

I 
I 

I 
I 

I 

TRANS 
* without caching 

% Nodes 
Relative to 

Breadth-First 
Search 

6 = 3  

6 = 2  

6 = 1 (IDA*) 

1.0 1.5 2.0 2.5 3.0 

Heuristic Branching Factor bh 

Fig. 6. Effect of more liberal cost-bound increase 6. 

the same iteration remains constant over the whole range of 
branching factors. This is confirmed by the dashed line in the 
middle of Fig. 5 (at about 60%), which depicts the savings 
incurred by information gathered in the same iteration. For 
these data points, the transposition table has been cleared be- 
tween iterations. In total, roughly 40% of the node generations 
can be saved by avoiding cycles and transpositions, while an 
additional 20 to 40% reduction can be achieved by exploiting 
information gathered in previous iterations. 

In applications with low heuristic branching factors (like 
the TSP) iterative-deepening is clearly not the best solution 
method. To minimize repeated node expansions, the cost 
bound should be increased by more than the minimal amount 
[91, 1151, 1181, [22 ] ,  [29]. But by how much should the cost 
bound be increased and up to which branching factor is it 
beneficial to do so? Fig. 6 presents a numerical analysis of 
iterative-deepening search with various cost bound increments 
6. We made the following simplifying assumptions: 

1) there is one goal node in the solution depth g = 37,3 
2) we assume unity arc costs, 
3) the solution density does not increase with the search 

depth, 
4) the heuristic branching factor bh is constant over all 

iterations, 
5 )  the cost bound increments 6 remain constant over the 

search (we do not allow decreasing or increasing 6). 
The data points in Fig. 6 are plotted relative to the node 

expansions of a breadth-first search which finds the solution 
in the middle of the search frontier in depth 37. Clearly, the 
IDA* node count depends on whether the solution depth is 
a multiple of the cost bound increment 6. If this is the case, 
an optimal solution will be found in the last iteration, while 
saving some intermediate iterations. Fig. 6 shows a worst case 
situation, where the solution depth g = 37 is a prime. As can 
be seen, the larger cost bound increases are only beneficial in 

3This solution depth occurred often in the TSP with domain [ I ] ,  [751. 
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trees with small branching factors (e.g., S = 4 is advantageous 
in trees with bh 5 1.5). 

In practice, one would use a method that dynamically adjusts 
the cost bound increments to the heuristic branching factor, 
so that a sufficient number of new nodes are expanded in 
successive iterations (e.g., IDA*-CR, [22]). Other practical 
alternatives include hybrid iterative-deepening and depth-first 
branch-and-bound algorithms like DFS* [18] and MIDA* [29]. 

VII. CONCLUSION 

function DepthFirstSearch (n, bound): integer; 
var 

{ returns next cost hound } 
{ called by IterativeDeepening, see Fig. 1 } 

new-bound, ttdound, i ,  t: integer; 
next: node; 
succ: array [l..maxwidth] of node; 
b: array [l..max.width] of integer; 

{ successor nodes } 
{ successor's cost hounds } 

begin 
if h(n) = 0 then begin 

end; 
new-bound := 00; 

for each successor n, of n do begin 
succ[i] := n,; 
if retrieveft (n,, tt-bound) then 

solved := true; return (0); { found a solution: return cost ) 

{ if n, is in transposition table } 
We adaDted commonlv used search techniaues from b[i] := c(n, n,) + tt-bound; { . . . then use revised cost value } 

else 
b[z] := c(n,n,) + h(n,); the domain of adversary game-tree searching to single- 

agent iterative-deepening search. We found that avoiding end; 
{ . . . else use heuristic estimate } 

transpositions and cycles is more lucrative than any kind of 
operator pre-sorting. The best combination of the proposed 
techniques, namely a transposition table with node successor 
ordering information, reduces the size of the search graph 
by one half (in the 15-puzzle) or even by three quarters (in 
the TSP). This is possible because the saved information can 
be used to detect duplicate states and to guide the expansion 
process to the most promising direction in the search tree. In 
both applications, our TRANS+MOVE enhancement generates 
fewer nodes than a perfectly informed (nondeterministic) 
IDA*, which runs through all iterations zl,z2,...,in-1 and e 

sort (succ[], b[]); 
for i = 1 t o  last successor of n do begin 

{ sort succ and b to increasing bound values n[] } 

{ recurse ) 

{ search deeper ) 
next := succ[i]; 
if b[i] 5 bound then 

else 

if solved then return (t); 
new-bound := min (new-bmmd,t); 

t := c(n,next) + DepthFirstSearch (nest, bound - c(n, next)); 

t := b[i]; { cutoff } 

{ compute next iteration's bound } 

{ save lowest hound of n in transposition table } 
{ return next iteration's cost bound } 

end; 
save-tt (n, newbound); 
return (new-bound); 

md: 
finds a goal node at the very first node expansion in the final 
iteration in. 

The 15-puzzle has proved to be an especially difficult appli- 
cation to improve, from a CPU-time performance standpoint, 
because of cheap operator costs and low branching factors. 
Although the simple successor ordering of SORT did not pay 
off, the other heuristics, namely PV, TRANS and MOVE, reduce 
the search time by 13, 24 and 37%, respectively. These results 
compare favorably to those of others [25, Table 21, [2], [12], 
[211, P21, [ W .  

In practice, one would first include the PV-heuristic, because 
of its negligible space and time overheads. It simply uses 
standard information on the best subtree that is needed to 
determine the solution path. If memory space is available, one 
would then include a transposition table that holds all states 
seen during the search. Since a table access needs only unit 
time, it does not affect the time complexity of the program. 

Transposition tables are most beneficial in applications 
with measurable operator costs, like the traveling salesman 
problem. Depending on the range of inter-city distance values, 
a transposition table of 256 K entries reduces the search time 
by as much as 72%. These CPU time savings correspond to 
a node reduction of 73%, which justifies our assumption that 
unsuccessful table accesses are easily compensated by the fast 
successful retrievals. 

Another favorable aspect of the hashing technique is that it 
can be efficiently applied in parallel environments. With tree 
structured data types, a whole path must be sent to identify a 
single node, while hashing techniques need only transfer one 
hash key (that usually consists of one memory word only). 
Thus, hashing techniques make it possible to profit from the 
computations of the other processes. 

Fig. 7. Iterative-Deepening A* with transposition table and cost revision. 

Ease of implementation and maintenance is also a key 
issue. In our experience [19], hashing tables are much easier 
to implement and debug than the tree-structured data types 
of A* [3] and other IDA* variants [2], [21], [25]. In some 
way the transposition table plays a role similar to A*'s Open 
and Closed lists, with greater flexibility and speed, but with 
some risk of omission. When space restrictions are tight, table 
overloading might become a problem. It is then customary to 
overwrite the older information from deeper tree levels. The 
rationale is to give preference to the precious information on 
nodes near the root, where more CPU-time has been spent to 
search the emanating subtree. 

APPENDIX 

Fig. 7 shows how to use a transposition table and cost 
revision in depth first search. 
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