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Abstract. The problem of formulating general concepts from specific training examples has long been a 
major focus of machine learning research. While most previous research has focused on empirical 
methods for generalizing from a large number of training examples using no domain-specific knowledge, 
in the past few years new methods have been developed for applying domain-specific knowledge to for- 
mulate valid generalizations from single training examples. The characteristic common to these methods 
is that their ability to generalize from a single example follows from their ability to explain why the training 
example is a member of the concept being learned. This paper proposes a general, domain-independent 
mechanism, called EBG, that unifies previous approaches to explanation-based generalization. The EBG 
.method is illustrated in the context of several example problems, and used to contrast several existing 
systems for explanation-based generalization. The perspective on explanation-based generalization af- 
forded by this general method is also used to identify open research problems in this area. 

1. Introduct ion and mot ivat ion  

The abili ty to generalize f rom examples is widely recognized as an  essential capabil i ty 

of  any learning system. Genera l iza t ion  involves observing a set of  t ra ining examples 

of  some general  concept ,  ident i fying the essential features c o m m o n  to these ex- 

amples,  then fo rmula t ing  a concept  def ini t ion based on these c o m m o n  features. The 

general izat ion process can thus be viewed as a search th rough a vast space of  possible 

concept def ini t ions ,  in search of a correct def ini t ion of  the concept to be learned.  

Because this space of  possible concept  defini t ions is vast, the heart  of  the generaliza- 

t ion  p rob lem lies in uti l izing whatever t ra ining data,  assumpt ions  and  knowledge are 

available to cons t ra in  this search. 

Most  research on the general izat ion p rob lem has focused on empirical,  data-  

intensive methods  that  rely on large numbers  of t ra in ing  examples to constra in  the 

search for the correct general izat ion (see Mitchell,  1982; Michalski ,  1983; Dietterich, 
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1982 for overviews of  these methods). These methods all employ some kind of  induc- 
tive bias to guide the inductive leap that they must make in order to define a concept 
from only a subset of  its examples (Mitchell, 1980). This bias is typically built into 
the generalizer by providing it with knowledge only of those example features that 
are presumed relevant to describing the concept to be learned. Through various 
algorithms it is then possible to search through the restricted space of concepts 
definable in terms of  these allowed features, to determine concept definitions consis- 
tent with the training examples. Because these methods are based on searching for 
features that are common to the training examples, we shall refer to them as 
similarity-based generalization methods. 1 

In recent years, a number of  researchers have proposed generalization methods 
that contrast sharply with these data-intensive, similarity-based methods (e.g., 
Borgida et al., 1985; DeJong, 1983; Kedar-Cabelli, 1985; Keller, 1983; Lebowitz, 
1985; Mahadevan, 1985; Minton, 1984; Mitchell, 1983; Mitchell et al., 1985; 
O'Rorke,  1984; Salzberg & Atkinson, 1984; Schank, 1982; Silver, 1983; Utgoff,  
1983; Winston et al., 1983). Rather than relying on many training examples and an 
inductive bias to constrain the search for a correct generalization, these more recent 
methods constrain the search by relying on knowledge of  the task domain and of  the 
concept under study. After analyzing a single training example in terms of  this 
knowledge, these methods are able to produce a valid generalization of  the example 
along with a deductive justification o f  the generalization in terms o f  the system's 
knowledge. More precisely, these explanation-based methods 2 analyze the training 
example by first constructing an explanation of how the example satisfies the defini- 
tion of  the concept under study. The features of  the example identified by this ex- 
planation are then used as the basis for formulating the general concept definition. 
The justification for this concept definition follows from the explanation constructed 
for the training example. 

Thus, by relying on knowledge of the domain and of  the concept under study, 
explanation-based methods overcome the fundamental difficulty associated with in- 
ductive, similarity-based methods: their inability to justify the generalizations that 
they produce. The basic difference between the two classes of  methods is that 
similarity-based methods must rely on some form of inductive bias to guide 
generalization, whereas explanation-based methods rely instead on their domain 
knowledge. While explanation-based methods provide a more reliable means of  

1 The term similarity-basedgeneralization was suggested by Lebowitz (1985). We use this term to cover 

both methods that search for similarities among positive examples, and for differences between positive 

and negative examples. 
2 The term explanation-basedgeneralization was first introduced by DeJong (1981) to describe his par- 

ticular generalization method. The authors have previously used the term goal-directed generalization 
(Mitchell, 1983) to refer to their own explanation-based generalization method. In this paper, we use the 
term explanation-based generalization to refer to the entire class of methods that formulate generaliza- 

tions by constructing explanations. 
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,~eneralization, and are able to extract more information from individual training 
examples, they also require that the learner possess knowledge of  the domain and of  
the concept under study. It seems clear that for a large number of  generalization 
problems encountered by intelligent agents, this required knowledge is available to 
the learner. In this paper we present and analyze a number of  such generalization 
problems. 

The purpose of  this paper is to consider in detail the capabilities and requirements 
of  explanation-based approaches to generalization, and to introduce a single 
mechanism that unifies previously described approaches. In particular, we present 
a domain-independent method (called EBG) for utilizing domain-specific knowledge 
to guide generalization, and illustrate its use in a number of  generalization tasks that 
have previously been approached using differing explanation-based methods. EBG 
constitutes a more general mechanism for explanation-based generalization than 
these previous approaches. Because it requires a larger number of  explicit inputs (i.e., 
the training example, a domain theory, a definition of  the concept under study, and 
a description of  the form in which the learned concept must be expressed) EBG can 
be instantiated for a wider variety of  learning tasks. Finally, EBG provides a perspec- 
tive for identifying the present limitations of  explanation-based generalization, and 
for identifying open research problems in this area. 

The remainder of  this paper is organized as follows. Section 2 introduces the 
general EBG method for explanation-based generalization, and illustrates the 
method with an example. Section 3 then illustrates the EBG method in the context 
of two additional examples: (1) learning a structural definition of  a cup from a train- 
ing example plus knowledge about the function of  a cup (based on Winston et al. 's 

-(1983) work), and (2) learning a search heuristic from an example search tree plus 
knowledge about search and the search space (based on Mitchell et al. 's (1983) work 
on the LEX system). Section 4 concludes with a general perspective on explanation- 
based generalization and a discussion of  significant open research issues in this area. 
The appendix relates DeJong's (1981, 1983) research on explanation-based 
generalization and explanatory schema acquisition to the other work discussed here. 

2. Explanation-based generalization: discussion and an example 

The key insight behind explanation-based generalization is that it is possible to form 
a justified generalization of  a single positive training example provided the learning 
system is endowed with some explanatory capabilities. In particular, the system must 
be able to explain to itself why the training example is an example of  the concept 
under study. Thus, the generalizer is presumed to possess a definition of  the concept 
~under study as well as domain knowledge for constructing the required explanation. 
In this section, we define more precisely the class of  generalization problems covered 
by explanation-based methods, define the general EBG method, and illustrate it in 
terms of  a specific example problem. 
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2.1 The explanation-based generalization problem 

In o rde r  to def ine  the  genera l i za t ion  p rob l em cons idered  here,  we first  i n t roduce  

some t e rmino logy .  A concept is def ined  as a p red ica te  over  some universe o f  in- 

s tances,  and  thus  charac te r izes  some subset  o f  the  instances.  Each  instance in this 

universe is descr ibed  by  a col lec t ion  o f  g round  l i terals  tha t  represent  its fea tures  and  

their  values.  A concept definition descr ibes  the  necessary  and  suff ic ient  cond i t ions  

for  being an example  o f  the concept ,  while a sufficient concept definition descr ibes  

suff icient  cond i t ions  for  being an example  o f  the  concept .  A n  ins tance tha t  satisfies 

the concept  def in i t ion  is cal led an  example, or  positive example o f  tha t  concept ,  

whereas  an ins tance  tha t  does  not  sat isfy the  concept  def in i t ion  is cal led a negative 

example o f  tha t  concept .  A generalization o f  an example  is a concept  def in i t ion  which 

describes a set con ta in ing  tha t  example .  3 A n  explanation o f  how an ins tance  is an ex- 

ample  o f  a concept  is a p r o o f  tha t  the  example  satisfies the  concept  def in i t ion .  A n  

explanation structure is the p r o o f  tree,  m o d i f i e d  by  rep lac ing  each ins tan t ia ted  rule 

by the assoc ia ted  genera l  rule.  

The  generic  p r o b l e m  def in i t ion  shown in Table  1 summar izes  the class o f  

genera l i za t ion  p rob l ems  cons idered  in this pape r .  Tab le  2 i l lus t ra tes  a pa r t i cu la r  in- 

s tance o f  an e x p l a n a t i o n - b a s e d  genera l i za t ion  p r o b l e m  f rom this class. As  ind ica ted  

by  these tables ,  def in ing  an exp lana t ion -based  learn ing  p r o b l e m  involves specifying 

four  k inds  o f  i n f o r m a t i o n :  

The  goal concept defines  the  concept  to be acqui red .  F o r  instance,  in the  

p r o b l e m  def ined  in Table  2 the  task  is to learn  to  recognize  pai rs  o f  ob jec t s  

< x , y >  such tha t  it is safe  to s tack x on top  o f  y. Not ice  tha t  the goal  concept  

Table 1. The explanation-based generalization problem 

Given: 
• Goal Concept: A concept definition describing the concept to be learned. (It is assumed that this 

concept definition fails to satisfy the Operationality Criterion.) 
• Training Example: An example of the goal concept. 
• Domain Theory." A set of rules and facts to be used in explaining how the training example is an 

example of the goal concept. 
• Operationality Criterion: A predicate over concept definitions, specifying the form in which the 

learned concept definition must be expressed. 

Determine: 
• A generalization of the training example that is a sufficient concept definition for the goal concept 

and that satisfies the operationality criterion. 

3 In fact, we use the term generalization in this paper both as a noun (to refer to a general concept defini- 
tion), and as a verb (to refer to the process of deriving this generalization). 
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Given: 

• Goal COncept: Pairs of objects <x,  y>  such that SAFE-TO-STACK (x, y), where 
SAFE-TO-STACK (x, y) ~ NOT (FRAGILE (y)) v LIGHTER (x, y). 

• Training Example: 

ON (OBJ1, OBJ2) 
ISA (OBJ1, BOX) 
ISA (OBJ2, ENDTABLE) 
COLOR (OBJ1, RED) 
COLOR (OBJ2, BLUE) 
VOLUME (OBJ1, 1) 
DENSITY (OBJ1, .1) 

• Domain Theory: 

VOLUME (pl, vl) /~ DENSITY (pl, dl) -~ WEIGHT (pl, vl*dl)  
WEIGHT (pl, wl) A WEIGHT (p2, w2) A LESS (wl, w2) ~ LIGHTER (pl, p2) 
ISA (pl, ENDTABLE) -~ WEIGHT (pl, 5) (default) 
LESS (.1, 5) 

• Operationality Criterion: The concept definition must be expressed in terms of the predicates used 
to describe examples (e.g., VOLUME, COLOR, DENSITY) or other selected, easily evaluated, 
predicates from the domain theory (e.g., LESS). 

Determine: 

• A generalization of training example that is a sufficient concept definition for the goal concept and 
that satisfies the operationality criterion. 

here, SAFE-TO-STACK, is defined in terms of  the predicates FRAGILE and 
LIGHTER,  whereas the training example is defined in terms of  other pred- 
icates (i.e., COLOR, DENSITY, VOLUME, etc.). 

• The training example is a positive example of  the goal concept. For instance, 
the training example of  Table 2 describes a pair of  objects, a box and an end- 
table, where one is safely stacked on the other. 

• The domain theory includes a set of  rules and facts that allow explaining how 
training examples are members of  the goal concept. For instance, the domain 
theory for this problem includes definitions of  FRAGILE and LIGHTER,  
rules for inferring features like the W E I G H T  of  an object from its DENSITY 
and VOLUME, rules that suggest default values such as the W E I G H T  of an 
ENDTABLE,  and facts such as '.1 is LESS than 5'. 

• The operationality criterion defines the terms in which the output concept 
definition must be expressed. Our use of  this term is based on Mostow's (1981) 
definition that a procedure is operational relative to a given agent and task, 
provided that the procedure can be applied by the agent to solve the task. 
Similarly, we assume that the learned concept definition will be used by some 
agent to perform some task, and must be defined in terms operational for 
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that agent and task. For this problem, the operationality criterion requires 
that the final concept definition be described in terms of  the predicates used 
to describe the training example (e.g., COLOR, VOLUME, DENSITY) or in 
terms of  a selected set of  easily evaluated predicates from the domain theory 
(e.g., LESS). Reexpressing the goal concept in these terms will make it opera- 
tional with respect to the task of efficiently recognizing examples o f  the 
concept. 

Given these four inputs, the task is to determine a generalization of the training 
example that is a sufficient concept definition for the goal concept and that satisfies 
the operationality criterion. Note that the notion of  operationality is crucial for 
explanation-based generalization: if the operationality criterion were not specified, 
the input goal concept definition could always be a correct output concept definition 
and there would be nothing to learn! The operationality criterion imposes a require- 
ment that learned concept definitions must be not only correct, but also in a usable 
form before learning is complete. This additional requirement is based on the view- 
point that concept definitions are not learned as theoretical entities, but rather as 
practical entities to be used by a particular agent for a particular task. 

2.2 The EBG method 

The EBG method, which is designed to address the above class of  problems, is de- 
fined as follows: 

The EBG method 
1. Explain: Construct an explanation in terms of  the domain theory that proves how 

the training example satisfies the goal concept definition. 

• This explanation must be constructed so that each branch of  the explana- 
tion structure terminates in an expression that satisfies the operationality 
criterion. 

2. Generalize: Determine a set of  sufficient conditions under which the explanation 
structure holds, stated in terms that satisfy the operationality criterion. 

• Thisisaccomplishedbyregressingthegoalconceptthroughtheexplanation 
structure. The conjunction of  the resulting regressed expressions constitutes 
the desired concept definition. 

To see more concretely how the EBG method works, consider again the problem 
of learning the concept SAFE-TO-STACK (x, y). The bottom of  Figure 1 shows a 
training example for this problem, described in terms of  a semantic network of  ob- 
jects and relations. In particular, the example consists of  two physical objects, OBJ 1 
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I 
WEIGHT (OBJ1, .1) LESS (.1, 5) 

I I 
VOLUME (OBJ1, 1) DENSITY (OBJ1, .1) 

I 
WEIGHT (OBJ2, 5) 

l 
ISA (OBJ2, ENDTABLE) 

T R A I N I N G  
E X A M P L E :  

BONNIE 

YES CLYDE 

Figure 1. Explanation of SAFE-TO-STACK (OBJ1, OBJ2). 

and OBJ2, in which OBJ1 is ON OBJ2, and for which several features o f  the objects 
are described (e.g., their OWNERs,  COLORs).  

Given this training example, the task is to determine which o f  its features are rele- 
vant to characterizing the goal concept,  and which are irrelevant. To  this end, the 
first step o f  the EBG method is to construct an explanation o f  how the training exam- 
ple satisfies the goal concept.  Notice that the explanation constitutes a proof ,  and 
constructing such an explanation therefore may involve in general the complexities 
o f  theorem proving. The explanation for the training example depicted in the lower 
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portion of  Figure 1 is given in the top portion of  the figure. As shown there, the pair 
of  objects < O B J 1 ,  O B J 2 >  satisfies the goal concept SAFE-TO-STACK because 
OBJ1 is L I G H T E R  than OBJ2. Furthermore,  this is known because the WEIGHTs  
of OBJ1 and OBJ2 can be inferred. For OBJ1, the W E I G H T  is inferred from its 
DENSITY and VOLUME,  whereas for OBJ2 the W E I G H T  is inferred based on a 
rule that specifies the default weight of  ENDTABLEs  in general. 

Through this chain of  inferences, the explanation structure demonstrates how 
OBJ1 and OBJ2 satisfy the goal concept definition. Note that the explanation struc- 
ture has been constructed so that each of  its branches terminates in an expression that 
satisfies the operationality criterion (e.g., VOLUME (OBJ1, 1), LESS (. 1, 5)). In this 
way, the explanation structure singles out those features of  the training example that 
are relevant to satisfying the goal concept, and that provide the basis for constructing 
a justified generalization of  the training example. For the current example, these rele- 
vant training example features are shown shaded over in the figure, and correspond 
to the conjunction VOLUME (OBJ1, 1) A DENSITY (OBJ1, 0.1) A ISA (OBJ2, 
ENDTABLE).  

Whereas the first step of  the EBG method isolates the relevant features of  the train- 
ing example, it does not determine the desired generalized constraints on feature 
values. For instance, while the feature VOLUME (OBJ 1, 1) is relevant to explaining 
how the present training example satisfies the goal concept, the general constraint on 
acceptable values for VOLUME is yet to be determined. The second step of the EBG 
method therefore generalizes on those feature values selected by the first step, by 
determining sufficient conditions on these feature values that allow each step in the 
explanation structure to carry through. 

In order to determine general sufficient conditions under which the explanation 
holds, the second step of  the EBG method involves regressing (back propagating) the 
goal concept step by step back through the explanation structure. In general, regress- 

ing a given formula F through a rule R is a mechanism for determining the necessary 
and sufficient (weakest) conditions under which that rule R can be used to infer F. 
We employ a slightly modified version of  the goal-regression algorithm described 
by Waldinger (1977) and Nilsson (1980). 4 Our modified goal regression algorithm 

computes an expression that represents only a sufficient condition (rather than 
necessary and sufficient conditions) under which rule R can be used to infer formula 
F, but that corresponds closely to the training example under consideration. In par- 
ticular, whereas the general goal regression algorithm considers all possible variable 
bindings (unifications) under which R can infer F, our modified algorithm considers 
only the specific variable bindings used in the explanation of  the training example. 
Furthermore,  if the rule R contains a disjunctive antecedent (left-hand side), then our 

Dijkstra (1976) introduces the related notion of weakest preconditions in the context of proving 
program correctness. The weakest preconditions of a program characterize the set of all initial states 
of that program such that activation guarantees a final state satisfying some postcondition. 
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RI: 

R2: 

SAFE - TO - STACK (pl ,  p2) 

T 
LIGHTER (pl, p2) 

LIGHTER (x, y) 

LIGHTER (pl, p2) 

{x/p1, y/p2} 

{x,/pl, y/p2} 

WEIGHT (p l ,w l )  
WEIGHT (x, wl )  

R3: WEIGHT (pl, v l *d l )  

l {x/p1, vl*dl/wl} 

I I 
VOLUME (pl, vl) 

VOLUME (x, v l )  

LESS (wl, w2) 
LESS (wl,  w2) 

I 
WEIGHT (p2, w2) 

WEIGHT (y, w2) 

D4: WEIGHT (p2, 5) 

{y/p2, 5/w2} 

DENSITY (pl, d l )  ISA (p2, ENDTABLE) 
DENSITY (x, d l )  LESS (v l*d l ,  5) ISA (y, ENDTABLE) 

Figure 2. Generalizing from the explanation of SAFE-TO-STACK (OBJ1, OBJ2). (Underlined expres- 
sions are the results of regressing the goal concept.) 

algorithm considers only the particular disjuncts satisfied by the training example. 
Figure 2 illustrates the second step of the EBG method in the context of the SAFE- 

TO-STACK example. In the first (topmost) step of this figure, the goal concept ex- 
pression SAFE-TO-STACK (x, y) is regressed through the rule LIGHTER (pl, p2) 

SAFE-TO-STACK (pl, p2), 5 to determine that LIGHTER (x, y) is a sufficient 
condition for inferring SAFE-TO-STACK (x, y). Similarly, regressing LIGHTER 
(x, y) through the next step in the explanation structure yields the expression 
WEIGHT (x, wl) A WEIGHT (y, w2) A LESS (wl, w2). This expression is in turn 
regressed through the final steps of the explanation structure to yield the operational 
definition for SAFE-TO-STACK (x, y). 

To illustrate the goal regression process in greater detail, consider the final step of 
Figure 2 in which the expression WEIGHT (x, wl) A WEIGHT (y, w2) A LESS (wl, 
w2) is regressed through the final steps of the explanation structure. Each conjunct 
of the expression is regressed separately through the appropriate rule, in the follow- 
ing way. The conjunct is unified (matched) with the consequent (right-hand side) of 

5 Notice that the definition of SAFE-TO-STACK given in Table 2 is a disjunctive definition. As noted 
above, the procedure considers only the disjunct that is satisfied by the current training example (e,g., the 

.disjunct involving the LIGHTER predicate), 
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the rule to yield some set of substitutions (particular variable bindings). The substitu- 
tion consistent with the example is then applied to the antecedent (left-hand side) of 
the rule to yield the resulting regressed expression. 6 Any conjuncts of the original 
expression which cannot be unified with the consequent of any rule are simply added 
to the resulting regressed expression (with the substitutions applied to them). As il- 
lustrated in the figure, regressing the conjunct WEIGHT (x, wl) through the rule 
VOLUME (pl, vl) A DENSITY (pl, dl) ~ WEIGHT (pl, vl*dl) therefore yields 
VOLUME (x, vl) A DENSITY (x, dl). Regressing the conjunct WEIGHT (y, w2) 
through the rule ISA (p2, ENDTABLE) ~ WEIGHT (p2, 5) yields ISA (y, END- 
TABLE). Finally, since no rule consequent can be unified with the conjunct LESS 
(wl, w2), this conjunct is simply added to the resulting regressed expression after 
applying the substitutions produced by regressing the other conjuncts. In this case 
these substitutions are [ x/pl ,  v l*dl /wl ,  y/p2, 5/w2 }, which yield the third conjunct 
LESS (vl*dl, 5). The final, operational definition for SAFE-TO-STACK (x, y) is 
therefore: 

VOLUME (x, vl) 
A DENSITY (x, dl) 
A LESS (vl*dl, 5) 
A ISA (y, ENDTABLE) SAFE-TO-STACK (x, y) 

This expression characterizes in operational terms the features of the training ex- 
ample that are sufficient for the explanation structure to carry through in general. 
As such, it represents a justified generalization of the training example, for which 
the explanation structure serves as a justification. 

2.3 Discussion 

Several general points regarding the EBG method are illustrated in the above exam- 
ple. The main point of the above example is that the EBG method produces a justified 
generalization from a single training example in a two-step process. The first step 
creates an explanation that separates the relevant feature values in the examples from 
the irrelevant ones. The second step analyzes this explanation to determine the par- 
ticular constraints on these feature values that are sufficient for the explanation 
structure to apply in general. Thus, explanation-based methods such as EBG over- 
come the main limitation of similarity-based methods: their inability to produce 
justified generalizations. This is accomplished by assuming that the learner has 
available knowledge of the domain, the goal concept, and the operationality 

6 It is correctly observed in DeJong (1986) that the substitution list used to regress expressions through 
previous steps in the explanation must be applied to the current expression before the next regression step: 
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criterion, whereas similarity-based generalization does not rely on any of these 
inputs. 

A second point illustrated by the above example is that the language in which the 
final concept definition is stated can be quite rich. Notice in the above example that 
the final generalization includes a constraint that the product of the DENSITY and 
VOLUME of x must be less than 5. There are very many such relations among the 
parts of the training example that might be considered during generalization (e.g., 
why not consider the fact that the OWNERs of the two objects are of different 
SEX?). The interesting point here is that the appropriate constraint was derived 
directly by analyzing the explanation, without considering the universe of possible 
relations among parts of the training example. This is in marked contrast with 
similarity-based generalization methods (e.g. Michalski, 1983; Quinlan, 1985). Such 
methods are typically based on a heuristic focusing criterion, such as the heuristic 
that 'less complex features are preferred over more complex features for character- 
izing concepts'. Therefore, before such methods will consider the feature LESS 
(vl*dl, 5) as a plausible basis for generalization, they must first consider vast 
numbers of syntactically simpler, irrelevant features. 

A final point illustrated by this example is that the final concept definition pro- 
duced by EBG is typically a specialization of the goal concept rather than a direct 
reexpression of the concept. This is largely due to the fact that the explanation struc- 
ture is created for the given training example, and does not explain every possible 
example of the goal concept. Thus, the generalization produced from analyzing this 
explanation will only cover examples for which the explanation holds. Furthermore, 
because the modified goal regression algorithm computes only sufficient (not 
necessary and sufficient) conditions under which the explanation holds, it leads to 
a further specialization of the concept. This limitation of explanation-based 

generalization suggests an interesting problem for further research: developing 
explanation-based methods that can utilize multiple training examples (see the discus- 
sion in Section 4). 

3. Other examples and variations 

This section discusses two additional examples of explanation-based generalization 
that have previously been reported in the literature. The first is Winston, Binford, 
Katz, and Lowry's (1983) research on learning structural definitions of concepts such 
as 'cup' from their functional definitions. The second is Mitchell, Keller, and 
Utgoff's (1983) research on learning search heuristics from examples (see also 
Utgoff, 1984; Keller, 1983). A common perspective on these two systems is provided 
b y  instantiating the EBG method for both problems. Differences among the two 
original approaches and the EBG method are also considered, in order to underscore 
some subtleties of the EBG method, and to suggest some possible variations. 
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3.1 An example: learning the concept CUP 

In this subsection we first summarize the application of the EBG method to a second 
example of an explanation-based generalization problem: the CUP generalization 
problem, patterned after the work of Winston et al. (1983). We then discuss the rela- 
tionship between the EBG method and the ANALOGY program of Winston et al., 
which addresses this same problem. 

The CUP generalization problem, defined in Table 3, involves learning a structural 
definition of a cup from its functional definition. In particular, the goal concept here 
is the concept CUP, defined as the class of objects that are OPEN-VESSELs, LIFT- 
ABLE, and STABLE. The domain theory includes rules that relate these properties 
to the more primitive structural properties of physical objects, such as FLAT, HAN- 
DLE, etc. The operationality criterion requires that the output concept definition be 
useful for the task of visually recognizing examples of CUPs. It thus requires that 
the output concept definition be expressed in terms of its structural features. 

Figure 3 illustrates a training example describing a particular cup, OBJ 1, along 
with the explanation that shows how OBJ1 satisfies the goal concept CUP. In par- 
ticular, the explanation indicates how OBJ1 is LIFTABLE, STABLE, and an OPEN- 
VESSEL. As in the SAFE-TO-STACK example, this explanation distinguishes the 
relevant features of the training example (e.g., its LIGHTness) from irrelevant 
features (e.g., its COLOR). The second step of the EBG method, regressing the goal 
concept through the explanation structure, results in the following general definition 
of the CUP concept: 

(PART-OF (x, xc) A ISA (xc, CONCAVITY) A IS (xc, UPWARD-POINTING) 
A PART-OF (x, xb) A ISA (xb, BOTTOM) A IS (xb, FLAT) 
A PART-OF (x, xh) A ISA (xh, HANDLE) A IS (x, LIGHT)) --, CUP (x) 

Table 3.The CUP generalization problem after Winston et al. (1983) 

Given: 
• Goal Concept: Class of objects, x, such that CUP(x), where 

CUP(x) ~ LIFTABLE(x) A STABLE(x) A OPEN-VESSEL(x) 
• Training Example: 

OWNER(OBJ 1, EDGAR) 
PART-OF(OBJ1, CONCAVITY-l) 
IS(OBJ1, LIGHT) 

• Domain Theory: 
IS(x, LIGHT) A PART-OF(x, y) A ISA(y, HANDLE) ~ LIFTABLE(x) 
PART-OF(x, y) A ISA(y, BOTTOM) A IS(y, FLAT) ~ STABLE(x) 
PART-OF(x, y) A ISA(y, CONCAVITY) A IS(y, UPWARD-POINTING ~ OPEN-VESSEL(x) 

• Operationality Criterion: Concept definition must be expressed in terms of structural features used 
in describing examples (e.g., LIGHT, HANDLE, FLAT, etc.). 

Determine: 

• A generalization of training example that is a sufficient concept definition for the goal concept and 
that satisfies the operationality criterion. 
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EXPLANATION 
STRUCTURE: CUP (OBJ1) 

I 
OPEN-VESSEL (OBJ1) STABLE (OBJ1) 

I 
LI FTABLE (OBJ1) 

PART-OF (OBJ1, CONCAVITY-I) 
ISA (CONCAVITY-I, CONCAVITY) 

IS (CONCAVITY-I, UPWARD-POINTING) 

IS (OBJ1, LIGHT) 
PART-OF (OBJ1, HANDLE-I) 

ISA (HANDLE-I, HANDLE) 

PART-OF (OBJ1, BOTTOM-I) 
ISA (BOTI-OM-1, BOTTOM) 

IS (BOTTOM-I, FLAT) 

TRAINING 
EXAMPLE: 

Figure 3. Explanation of CUP (OBJ1). 
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3.1.1 Discussion 

As in the first example, the EBG method is able to produce a valid generalization 
from a single training example, by explaining and analyzing how the training example 
satisfies the definition of  the goal concept. Notice that the regression step in this 
example is quite straightforward, and leads to generalizing the training example 
features effectively by replacing constants with variables (i.e., replacing OBJ1 by x). 
It is interesting that several earlier attempts at explanation-based generalization (e.g., 
Mitchell, 1983) involved the assumption that the explanation could always be 
generalized simply by replacing constants by variables in the explanation, without the 
need to regress the goal concept through the explanation structure. 7 As the earlier 
SAFE-TO-STACK example illustrates, this is not the case. In general, one must 
regress the goal concept through the explanation structure to ensure a valid general- 
ization of  the training example (which may involve composing terms from different 
parts of the explanation, requiring constants where no generalization is possible, and 
so on). 

Several interesting features of this example come to light when the EBG method 
is compared to the method used in Winston et al.'s (1983) ANALOGY program, 
upon which this example problem is based. The most striking difference between the 
two methods is that although ANALOGY does construct an explanation, and alsa 
uses this explanation to generalize from a single example, the system has no domain 
theory of the kind used in the above example. Instead, Winston's program constructs 
its explanations by drawing analogies between the training example and a library of  J 
precedent cases (e.g., annotated descriptions of example suitcases, bricks, bowls, 
etc.). For example, ANALOGY explains that the FLAT BOTTOM of OBJ1 allow~ 
OBJ1 to be STABLE, by drawing an analogy to a stored description of  a brick which 
has been annotated with the assertion that its FLAT BOTTOM 'causes' it to be 

STABLE. Similarly, it relies on an annotated example of  a suitcase to explain by 
analogy why a handle allows OBJ1 to be LIFTABLE. 

In general, the precedents used by ANALOGY are assumed to be annotated by 
links that indicate which features of  the precedent account for which of its properties. 
Thus, for the ANALOGY program, the causal links distributed over the library of  
precedents constitute its domain theory. However, this theory is qualitatively dif- 
ferent than the domain theory used in the CUP example above: it is described by ex- 
tension rather than intention (i.e., by examples rather than by general rules), and is 
therefore a weaker domain theory. Because ANALOGY's  knowledge about causality 
is summarized by a collection of  instances of  causal relations rather than by general 
rules of causality, its theory cannot lead deductively to assertions about new causal 
links. 

7 This observation is due in part to Sridhar Mahadevan. 
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Because its domain theory is weak, the ANALOGY system raises some interesting 
questions about explanation-based generalization. Whereas the SAFE-TO-STACK 
and CUP examples above show how a sufficient set of  domain theory rules can pro- 
vide powerful guidance for generalization, ANALOGY suggests how a weaker, ex- 
tensional theory might be used to focus the generalization process in a weaker 
fashion. In particular, the causal links are used by ANALOGY to construct a plausi- 
ble explanation, but not a proof,  that the training example satisfies the goal concept 
definition. As discussed above, such plausible explanations can guide generalization 
by focusing on plausibly relevant features of  the training example. But since 
ANALOGY lacks general inference rules to characterize the links in this explanation, 
it cannot perform the second (goal regression) step in the EBG method, and therefore 
has no valid basis for generalizing the explanation. In fact, the ANALOGY program 
generalizes anyway, implicitly, assuming that each causal link of  the form (feature 
(OBJ1) --* property (OBJ1)) is supported by a general rule of  the form ((vx) feature 
(x) --* property (x)). 8 Thus, ANALOGY represents an important step in considering 
the use of a weak domain theory to guide generalization, and helps to illuminate a 
number of  open research issues (see the discussion in Section 4). 

3..2 An example: learning a search heuristic 

This section presents a third example of  an explanation-based generalization problem 
- this one involving the learning of  search heuristics. This example is based on the 

problem addressed by the LEX program (Mitchell et al., 1983) which learns search 
control heuristics for solving problems in the integral calculus. In particular, LEX 
begins with a set of legal operators (transformations) for solving integrals (e.g., in- 
tegration by parts, moving constants outside the integrand). For each such operator,  
tile system learns a heuristic that summarizes the class of  integrals (problem states) 
for which it is useful to apply that operator.  For example, one typical heuristic 
learned by the LEX system is: 

IF the integral is of  the form I <polynomia l - fn> .  <tr igonometr ic- fn>dx,  
T H E N  apply Integration-by-Parts 

Thus, for each of  its given operators, LEX faces a generalization problem: learning 
the class of  integrals for which that operator is useful in reaching a solution. 

Table 4 defines the generalization problem that corresponds to learning when it is 
useful to apply OP3 (moving constants outside the integrand). Here the goal concept 
USEFUL-OP3 (x) describes the class of problem states (integrals) for which OP3 will 

8 W i n s t o n ' s  (1985) own work  on  bu i ld ing  rule censors  can  be viewed as an a t t e m p t  to address  diff icul t ies  

tha t  ar ise  f rom this impl ic i t  a s sump t ion .  
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Table 4. The search heuristic generalization problem after Mitchell et al. (1983) 

Given: 

• Goal  Concept: The class of integral expressions that can be solved by first applying operator OP3 
(removing a constant from the integrand); that is, the class of  integrals, x, such that USEFUL-OP3 
(x), where 

USEFUL-OP3(x) ~* NOT(SOLVED(x)) A SOLVABLE(OP3(x)) 

and 

OP3: ~ r .  < a n y - f n > d x  ~ r ~ < a n y - f n > d x .  

• Training Example :  I 7 x Z d x  

• Domain Theory: 
SOLVABLE(x) e~ (3op) (SOLVED(op(x)) v SOLVABLE(op(x))) 
MATCHES(x, 'J < a n y - f n > d x ' )  - ,  NOT (SOLVED(x)) 
MATCHES(x, ' < a n y -  f n >  ') ~ SOLVED(x) 
MATCHES(op(x), y) ~ MATCHES(x, REGRESS(y, op)) 

• Operationality Criterion: Concept definition must be expressed in a form that uses easily-com- 
putable features of  the problem state, x, (e.g., features such as <polynomial-fn>, 
< transcendental-fn >,  < any-fn > ,  r, k). 

Determine: 
• A generalization of  training example that is a sufficient concept definition of the goal concept and 

that satisfies the operationality criterion. 

be useful. This is defined to be the class of  problem states that are NOT already 
SOLVED (i.e., algebraic expressions that contain an integral sign), and for which 
applying OP3 leads to a SOLVABLE problem state. The domain theory in this casff 
contains rules that relate SOLVED and SOLVABLE to observable features of prob- 
lem states (e.g., one rule states that if problem state x MATCHES the expression 

< any- fn  > dx, then x is NOT a SOLVED state.). Notic~ that some of  the domairi 
theory rules constitute knowledge about search and problem solving in general (e.g., 
the definition of  SOLVABLE), while other rules represent knowledge specific to in- 
tegral calculus (e.g., that the absence of an integral sign denotes a SOLVED state). 
The operationality condition in this problem requires that the final concept definition 
be stated in terms of  easily-computable features of the given problem state. This re- 
quirement assures that the final concept definition will be in a form that permits its 
effective use as a search control heuristic. 9 For the LEX program, the set of  easily- 
computable features is described by a well-defined generalization language over 
problem states that includes features (e.g., < trigonometric-fn > ,  < real-constant > )  
which LEX can efficiently recognize using its MATCHES predicate. 

9 If the concept definition were permitted to include features that are difficult to compute (e.g., 
SOLVABLE), then the resulting heuristic would be so expensive to evaluate that its use would degrade, 
rather than improve, the problem solver's performance. 
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EXPLANATION 
STRUCTURE: 

USEFUL - OP3 (f7x2dx) 

t 
I 

NOT (SOLVED (f7x2dx)) 

MATCH ES ( f  7x2dx, " f <an~-fn>dx") 

I 
SOLVABLE (OP3 (f7x2dx)) 

SOLVED (OP9 (OP3 (f7x2dx))) 

t 
(a) P MATCHES (OP9 (OP3 (f7x2dx)), "<any-fn>") 

MATCHES (OP3 (J'7x2dx), "<any-fn>fx r =k--1 dx") 

t 
MATe H ES (f7x2dx, "<any-In> f r 1 xr2 ~:-1 dx") 

TRAINING 
EXAMPLE: 

Figure 4. Explanation of USEFUL-OP3  (J 7xZdx). 

7xa 
. . . . 1 o _  +c 

7,f'xZdx 

A training example for the goal concept USEFUL-OP3 is shown in the bottom por- 
tion of Figure 4. In particular, the problem state / 7xZdx constitutes a training exam- 
ple o f  a problem state for which application of  OP3 is useful. The training example 
described in the figure is shown along with the other problem states involved in its 
solution. 

The explanation of  USEFUL-OP3 (I 7xZdx) is shown in the top portion of  
Figure 4. The left-hand branch of  this explanation structure leads to a node which 
asserts that USEFUL-OP3 is satisfied in part because the training example state is 
not already a SOLVED state. The right-hand branch of  the explanation structure ex- 
plains that applying OP3 to the example state leads to a SOLVABLE problem state. 
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This is in turn explained by indicating that applying OP91° to the resulting state pro- 

duces a SOLVED problem, as evidenced by the fact that the resulting state 

MATCHES the expression ' < a n y - f n > '  (i.e., that it contains no integral sign). 
Thus, up to this point (marked as (a) in the figure), each step in the right-hand branch 
of the explanation structure corresponds to some step along the solution path of the 

training example. 
By point (a), the explanation has indicated that one relevant feature of  the training 

example state is that the result of applying OP3 followed by OP9, is a state that 
MATCHES ' < a n y - f n  > '. The operationality criterion requires, however, that the 

explanation be in terms of features of the single given training example state, rather 
than features of  its resulting solution state. Thus, the remainder of  the explanation 

consists of  reexpressing this constraint in terms of  the training example state. This 
is accomplished by applying the last rule in the domain theory of  Table 4. This rule H 

allows back propagating the expression ' <  a n y - f n  > '  through the general defini- 
tions of OP9 and OP3, to determine the equivalent constraint on the training example 

state. The resulting constraint is that the training example state must MATCH the 

expression ' < a n y  - f n  > ~ ra. x r 2 ¢  - 1 d x '  (Here r~ and r2 stand for two distinct real 
numbers, where rE must not be equal to - 1 .). This together with the left-hand branch 

of  the explanation structure, explains which features of  ~ 7 x 2 d x  guarantee that it 

satisfies the goal concept USEFUL-OP3. 
Given this explanation structure, the second step of  the EBG method is straight- 

forward. As in the CUP example, regressing the goal concept expression USEFUL- 

OP3 (x) through the explanation structure effectively results in replacing the training 
example state by a variable, so that the resulting generalization (taken from the leaves 

of  the explanation tree) is: 

MATCHES (x, 'I < a n y -  f n  > d x ' )  /x 

MATCHES (x, ' < any  - f n  > ~ r l .  xr2  ~= - -  1 d x ' )  --* USEFUL-OP3" 

which simplifies to: 

MATCHES (x, ' < a n y - f n >  ~ r~. x r z ¢ - l d x ' )  ~ USEFUL-OP3 (x) 

10 OP9: I x r c - - l d x  ~ x r + l / ( r +  1). 
~1 The domain theory rule MATCHES (op (x), y) ¢* MATCHES (x, REGRESS (y, op)) indicates that 

if the result of applying operator op to state x MATCHES some expression y, then the state x MATCHES 
some expression which can be computed by REGRESSing the expression y through operator op. Notice 
that the regression here involves propagating constraints on problem states through problem solving 
operators. This is a different regression step from the second step of the EBG process, in which the goal 
concept is regressed through the domain theory rules used in the explanation structure. 
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3.2.1 Discussion 

To summarize, this example demonstrates again the general EBG method of con- 
structing an explanation in terms that satisfy the operationality condition, then 
regressing the goal concept through the explanation structure to determine a justified 
generalization of the training example. As in the previous examples, this process 
results in a generalization of the training example which is a sufficient condition for 
satisfying the goal concept, and which is justified in terms of the goal concept, 
domain theory, and operationality criterion. 

In the above example, the goal concept corresponds to the precondition for a 
search heuristic that is to be learned. The domain theory therefore involves both 
domain-independent knowledge about search (e.g., the definition of SOLVABLE) 
and domain-dependent knowledge (e.g., how to recognize a SOLVED integral). To 
use this method to learn heuristics in a new domain, one would have to replace only 
the domain-dependent portion of the theory. To learn a different type of heuristic 
in the same domain, one could leave the domain theory intact, changing only the 
definition of the USEFUL-OP3 goal concept accordingly. For example, as suggested 
in Mitchell (1984), the system could be modified to learn heuristics that suggest only 
steps along the minimum cost solution path, by changing the goal concept to 

USEFUL-OP3 (s) o NOT(SOLVED (s)) A 
MIN-COST-SOLN (SOLUTION-PATH (OP3, s)) 

Note that the explanation structure in this example, like the domain theory, separates 
into a domain-independent and a domain-dependent portion. Domain-independent 
knowledge about search is applied above point (a) in Figure 4, and domain- 
dependent knowledge about calculus problem solving operators is applied below 
point (a). In the implementation of the LEX2 program (Mitchell, 1983), these two 
phases of the explanation were considered to be two unrelated subprocesses and were 
implemented as separate procedures. From the perspective afforded by the EBG 
method, however, these two subprocesses are better seen as different portions of the 
same explanation-generation step. 

One final point regarding the current example has to do with the ability of 
explanation-based methods to augment their description language of concepts. In 
LEX2, as in the SAFE-TO-STACK problem, this method is able to isolate fairly com- 
plex features of the training example that are directly related to the explanation of 
how it satisfies the goal concept. In the context of the LEX project, Utgoff (1985) 
studied this issue and developed the STABB subsystem. STABB is able to extend the 
initial vocabulary of terms used by LEX, by naming and assimilating terms that cor- 
"respond to the constraints derived during the regression step. For example, in one 
instance STABB derived the definition of odd integers through this regression step, 
defining it as 'the set of real numbers, x, such that subtracting 1 then dividing by 2 
produces an integer'. 
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3.2.2 Related methods for strategy learning 

There are a number  of  additional systems that learn problem solving strategies b y  
analyzing single examples of  successful solutions.12 These systems (e.g. Fikes et al., 
1972; Utgoff ,  1984; Minton, 1984; Mahadcvan,  1985), which wc might call STRIPS- 
like systems, can all be viewed as systems that learn a goal concept of  the following 
form: ' the set of  problem states such that applying a given operator sequence, OS, 
yields a final state matching a given solution property,  P . '  Since these systems are 
tuned to this single goal concept, and are not intended to learn other forms of  con- 
cepts, they typically do not represent the goal concept and explanation declaratively. 
However, they do represent the solution property,  P, explicitly, and regress this prop- 
erty through the operator  sequence OS to determine an operational definition of the 
(implicit) goal concept. From the perspective of  the above LEX example, the steps 
that they perform correspond to constructing the portion of  the explanation below 
point (a) in Figure 4. It is in constructing these steps of  the explanation that LEX 
regresses its solution property ' M A T C H E S  (x, < any- fn  > ) '  through the operator 
sequence < OP3, OP9 > to determine the equivalent constraint on the initial problem 
state. These STRIPS-like systems do not construct the portion of  the explanation cor- 
responding to the section above point (a) in Figure 4. Because they are tuned to a 
fixed goal concept, they do not need to generate this portion of the explanation 

explicitly for each training example. 
To illustrate this point, consider Minton 's  (1984) program for learning search 

heuristics in two-person games such as Go-Moku,  Tic-Tac-Toe, and Chess. This .  
program analyzes one positive instance of a sequence of moves that leads to a 
winning board position, in order to determine an operational definition of  the goal" 
concept ' the class of  board positions for which the given sequence of moves leads to 
a forced win' .  But Minton 's  system has no explicit definition of  this goal concept. 
It has only a definition of  the solution property P that characterizes a winning posi 2 
tion. For example, in the game of  Go-Moku,  (a variant of  Tic-Tac-Toe) this solution 
property characterizes a winning board position as 'a  board position with five X's  
in a row' .  This solution property is regressed by Minton 's  program through the 
operator sequence for the given training example. In this way, the program deter- 
mines that an effective definition of  its implicit goal concept is 'board  positions that 
contain three X's ,  with a blank space on one side, and two blank spaces on the other '  

~2 See Kibler and Porter (1985) for a thoughtful critique of analytic goal regression methods for learning 
search control heuristics, They discuss certain requirements for regression to succeed: that the operators 
be invertible, and that the representation language be able to express goal regression products. 
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4. Perspective and research issues 

] 'he previous sections presented a general method for explanation-based generaliza- 
tion, and illustrated its application to Several generalization tasks. This section sum- 
marizes some general points regarding explanation-based generalization, and con- 
siders a number of  outstanding research issues. 

To summarize, explanation-based generalization utilizes a domain theory and 
knowledge of  the goal concept to guide the generalization process. By doing so, the 
method is able to produce a valid generalization of  the training example, along with 
an explanation that serves as a justification for the generalization. The EBG method 
introduced here unifies mechanisms for explanation-based generalization that have 
been previously reported for a variety of task domains. The generality of  the EBG 
method stems from the fact that the goal concept, domain theory, and operationality 
criterion are made explicit inputs to the method, rather than instantiated implicitly 
within the method. 

4.1 Perspectives on explanation-based generalization 

Several perspectives on explanation-based generalization, and on the EBG method 
in particular, are useful in understanding their strengths and weaknesses: 

EBG as theory-guided generalization of training examples. EBG can be seen as the 
process of  interpreting or perceiving a given training example as a member of  the goal 
concept, based on a theory of  the domain. Soloway's (1978) early work on learning 
action sequences in the game of  baseball shares this viewpoint on generalization. This 
is the perspective stressed in the above sections, and it highlights the centrality of the 
goal concept and domain theory. It also highlights an important  feature of  EBG: that 
learning depends strongly on what the learner already knows. One consequence of  
this is that the degree of  generalization produced for a particular training example 
will depend strongly on the generality with which the rules in the domain theory are 
expressed. A second consequence is that the learning system can improve its learning 
performance to the degree that it can learn new rules for its domain theory. 

EBG as example-guided operationalization of the goal concept. One can also view 
EBG as the process of reformulating the goal concept in terms that satisfy the opera- 
tionality criterion, with the domain theory providing the means for reexpressing the 
goal concept. Given this perspective, one wonders why training examples are re- 
quired at all. In principle, they are not. Mostow's (1983) FOO system operationalizes 
general advice about how to play the card game of Hearts, without considering 
specific examples that apply that advice. Similarly, Keller (1983) describes a process 
of.concept operationalization, by which a sequence of  transformations is applied to 
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the goal concept in search of  a reformulation that satisfies the operationality 
criterion, without the guidance of  specific training examples. 

However, training examples can be critical in guiding the learner to consider rele- 
vant transformations of  the goal concept. For instance, consider the CUP learning 
task as described in Section 3.1, where a functional definition of  CUP is reexpressed 
in structural terms for use by a vision system recognizing cups. A system that refor- 
mulates the functional definition of  CUP in structural terms, without the guidance 
of  training examples, amounts to a system for producing all possible structural 
definitions for classes of cups (i.e., for designing all possible classes of  cups). Since 
there are so many possible designs for cups, and since so few of  these are actually 
encountered in the world, the learning system could easily waste its effort learning 
structural definitions corresponding to cups that will never be seen by the vision 
system!13 Training examples thus provide a means of focusing the learner on for- 
mulating only concept descriptions that are relevant to the environment in which it 
operates. 

EBG as Reformulating/Operationalizing/Deducing from what is already known. 
The above paragraph suggests that explanation-based generalization does not lead 
to acquiring truly 'new' knowledge, but only enables the learner to reformulate/  
operationalize/deduce what the learner already knows implicitly. While this state- 
ment is true, it is somewhat misleading. Consider, for example, the task of  learning 
to play chess. Once one is told the rules of the game (e.g., the legal moves, and how 
to recognize a checkmate), one knows in principle everything there is to know about 
chess - even the optimal strategy for playing chess follows deductively from the rules 
of  the game. Thus, although the EBG method is restricted to compiling the deductive 
consequences of  its existing domain theory, this kind of  learning is often nontrivial 
(as is the case for learning chess strategies). Nevertheless, it is a significant limitation 
that EBG is highly dependent upon its domain theory. As discussed below, further 
research is needed to extend the method to generalization tasks in which the domain 
theory is not sufficient to deductively infer the desired concept. 

4.2 Research issues 

4.2.1 Imperfect theory problems 

As the above discussion points out, one important assumption of EBG is that the 

13 Of course information about what types of  cups are to be encountered by the vision system also could 

be presented in the operationality criterion, since this information relates to the use of the concept defini- 
tion for the recognition task. This information, however, may not be easily described in the declarative 

form required by the operationality criterion. 
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domain theory is sufficient to prove that the training example is a member of  the goal 
concept; that is, that the inferred generalizations follow deductively (even if remote- 
1)) from what the learner already knows. Although this assumption is satisfied in 
each of the example problems presented above, and although there are interesting do- 
mains in which this assumption is satisfied (e.g., chess, circuit design (Mitchell et al., 
1985)), for the majority of  real-world learning tasks it is unrealistic to assume that 
the learner begins with such a strong theory. For both the SAFE-TO-STACK domain 
and the CUP domain, it is easy to imagine more realistic examples for which the re- 
quired domain theory is extremely complex, difficult to describe, or simply 
unknown. For generalization problems such as inferring general rules for predicting 
the stock market or the weather, it is clear that available theories of economics and 
meteorology are insufficient to produce absolutely predictive rules. Thus, a major  
research issue for explanation-based generalization is to develop methods that utilize 
imperfect domain theories to guide generalization, as well as methods for improving 
imperfect theories as learning proceeds. The problem of  dealing with imperfect 
theories can be broken down into several classes of  problems: 

The Incomplete Theory Problem. The stock market and weather prediction examples 
above both illustrate the incomplete theory problem. The issue here is that such 
theories are not complete enough to prove that the training example is a member of  
the goal concept (e.g., to prove why a particular training example stock has doubled 
over a twelve month period). However, even an incomplete theory might allow con- 
structing plausible explanations summarizing likely links between features of the 
training example and the goal concept. For example, even a weak theory of  
e~onomics allows one to suggest that the 'cash on hand'  of the company may be rele- 
vant to the goal concept 'stocks that double over a twelve month period' ,  whereas 
the 'middle initial of  the company president' is probably an irrelevant feature. Thus, 
il~complete theories that contain only information about plausible cause-effect rela- 
tions, with only qualitative rather than quantitative associations, can still provide im- 
portant guidance in generalizing. Methods for utilizing and refining such incomplete 
theories would constitute a major  step forward in understanding explanation-based 
generalization. 

The Intractable Theory Problem. A second class of  imperfect theories includes those 
which are complete, but for which it is computationally prohibitive to construct ex- 
planations in terms of  the theory. For instance, quantum physics constitutes a fairly 
complete theory that would be inappropriate for generating explanations in the 
SAFE-TO-STACK problem - generating the necessary explanations in terms of  
quantum physics is clearly intractable. Similarly, although the rules of chess con- 
stitute a domain theory sufficient to explain why any given move is good or bad, one 
would never use this theory to explain why the opening move 'pawn to king four '  
is a member of  the goal concept 'moves that lead to a win or draw for white'. In fact, 
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this theory of  chess is intractable for explaining why nearly any move is good or bad. 
Humans tend to respond to this problem by constructing more abstract, tractable 
theories that are approximations to the underlying intractable theory. In chess, for" 
example, the learner might formulate a more abstract theory that includes approx- 
imate assertions such as ' there is no threat to the king if it is surrounded by many 
friendly pieces' (Tadepalli, 1985). Such approximate, abstracted theories can be trac- 
table enough and accurate enough to serve as a useful basis for creating and learning 
from explanations. Developing computer methods that can construct such abstracted 
theories, and that can judge when they can safely be applied, is a problem for further 
research. 

The Inconsistent Theory Problem. A third difficulty arises in theories from which 
inconsistent statements can be derived. The domain theory in the SAFE-TO-STACK 
problem provides one example of such a theory. While this theory has a default rule 
for inferring the weight of  an end table, it also has a rule for computing weights from 
the known density and volume. Thus, the theory will conclude two different weights 
for a given end table provided that its density and volume are known, and provided 
that these are inconsistent with the default assumption about its weight. In such 
cases, it is possible to construct inconsistent explanations for a single training exam- 
ple. Furthermore, if two different training examples of  the same concept are 
explained in inconsistent terms (e.g., by utilizing one default assumption for one 
example, and some other assumptions for the second example), difficulties will cer- 
tainly arise in merging the resulting generalizations. Because of this, and because 
default assumptions are commonplace in theories of  many domains, the problem of  
dealing with inconsistent theories and inconsistent explanations is also an important 
one for future research. 

4.2.2 Combining explanation-based and similarity-based methods 

While EBG infers concept definitions deductively from a single example, similarity- 
based methods infer concept definitions inductively from a number of  training ex- 
amples. It seems clearly desirable to develop combined methods that would utilize 
both a domain theory and multiple training examples to infer concept definitions. 
This kind of  combined approach to generalization will probably be essential in do- 
mains where only imperfect theories are available. 

Although few results have been achieved in combining explanation-based and 
similarity-based methods, a number of  researchers have begun to consider this issue. 
Lebowitz (Lebowitz, 1985) is exploring methods for combining similarity-based 
methods and explanation-based methods in his UNIMEM system. UNIMEM ex- 
amines a database of  the voting records of  congresspersons, searching for empirical, 
similarity-based generalizations (e.g., midwestern congresspersons vote in favor of  
farm subsidies). The system then attempts to verify these empirical generalizations 
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by explaining them in terms of a domain theory (e.g. explaining how midwestern con- 
gresspersons satisfy the goal concept 'people who favor farm subsidies'). This ap- 
proach has the advantage that the similarity-based techniques can be used to generate 
a candidate set of possible generalizations from a large number of potentially noisy 
training examples. Once such empirical generalizations are formulated, explanation- 
based methods can help prune and refine them by using other knowledge in the 
system. 

Whereas Lebowitz's approach involves applying similarity-based generalization 
followed by explanation-based methods, an alternative approach is to first apply 
explanation-based methods to each training example, then to combine the resulting 
generalized examples using a similarity-based generalization technique. Consider, 
for example, using the version space method 14 to combine the results of explanation- 
based generalizations of a number of training examples (Mitchell, 1984). Since the 
explanation-based generalization of a positive training example constitutes a suffi- 
cient condition for the goal concept, this can be used as a generalized positive exam- 
ple to refine (generalize) the specific boundary set of the version space. Similarly, one 
could imagine generalizing negative training examples using explanation-based 
generalization, by explaining why they are not members of the goal concept. The 
resulting generalized negative example could then be used to refine (specialize) the 
general boundary set of the version space. Thus, while this combined method still suf- 
fers the main disadvantage of similarity-based methods (i.e., it makes inductive leaps 
based on its generalization language, which it cannot justify), it converges more 
rapidly on a final concept definition because it employs EBG to generalize each train- 
ing example. 

Kedar-Cabelli (1984, 1985) proposes an alternative method for combining the 
results of explanation-based generalizations from multiple training examples. This 
method, Purpose-Directed Analogy, involves constructing an explanation of one ex- 
"ample by analogy with an explanation of a familiar example, then combining the two 
explanations to produce a general concept definition based on both. Given explana- 
tions for two different examples, the proposed system combines the explanations as 
follows: Common portions of the two explanations remain unaltered in the com- 
bined explanation. Differing portions either become disjunctive subexpressions in 
the combined explanation, or are generalized to the next more specific common 
subexpression in the explanation. For example, given an explanation that a blue, 
ceramic mug is a CUP, and a second example of a white styrofoam cup, the explana- 
tion of the first example is used to construct by analogy an explanation for the 

The version space method  (Mitchell, 1978) is a similarity-based generalization method based on sum- 
.marizing the alternative plausible concept definitions by maintaining two sets: the 'specific' set contains 
the set of  most  specific concept definitions consistent with the observed data, and the 'general '  set contains 
the most  general concept definitions consistent with the data. All other plausible concept definitions lie 
between these two sets in the general-to-specific ordering over concept definitions. 
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second example. The two resulting explanations may differ in how they explain 
that the two example cups are GRASPABLE (assume the first example cup is 
GRASPABLE because it has a handle, whereas the second is GRASPABLE because 
it is conical). In this case, a generalization of the two explanations would include a 
disjunction, that either the conical shape, or a handle, makes it graspable. That, 
along with the common features of the two objects in the combined explanation 
structure leads to the generalization that cups include objects which are concave up- 
ward, have a flat bottom, are light, and have either a conical shape or a handle. Alter- 
natively, the combined explanation would retain only the next most-specific common 
subexpression, GRASPABLE,  which would lead to a slightly more general, yet less 
operational, definition of a cup. Thus, this method of  combining explanations of  
multiple examples provides a principled method for introducing disjunctions where 
needed into the common generalization of  the two examples. 

The three methods discussed above for combining similarity-based and 
explanation-based generalization offer differing advantages. The first method uses 
similarity-based generalization to determine empirical generalizations which may 
then be validated and refined by explanation-based methods. The second method in- 
volves employing a similarity-based method to combine the results of explanation- 
based generalizations from multiple examples. It suffers the disadvantage that this 
combination of  methods still produces unjustified generalizations. The third method 
merges the explanations of  multiple examples in order to produce a combined 
generalization that is justified in terms of  the merged explanations. More research 
is required on these and other possible methods for employing explanation-based 
methods when multiple training examples are available. 

4.2.3 Formulating generalization tasks 

The above discussion focuses on research issues within the framework of" 
explanation-based generalization. An equally important set of  research issues has to 
do with how such methods for generalization will be used as subcomponents of  larger 
systems that improve their performance at some given task. As our understanding 
of  generalization methods advances, questions about how to construct performance 
systems that incorporate generalization mechanisms will become increasingly 
important. 

One key issue to consider in this regard is how generalization tasks are initially for- 
mulated. In other words, where do the inputs to the EBG method (the goal concept, 
the domain theory, the operationality criterion) come from? Is it possible to build 
a system that automatically formulates its own generalization tasks and these inputs? 
Is it possible to build learning systems that automatically shift their focus of  attention 
from one learning problem to the next as required? What kind of  knowledge must" 
be transmitted between the performance system and the learning system to enable the 
automatic formulation of  generalization tasks? 
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Again, little work has been devoted to these issues. The SOAR system (Laird et 
al., 1984, Laird et al., 1986) is one example of  a learning system that formulates its 
own generalization tasks. Each time that SOAR encounters and solves a subgoal, it 
formulates the generalization problem of inferring the general conditions under 
which it can reuse the solution to this subgoal. SOAR then utilizes a technique closely 
related to explanation-based generalization, called implicit generalization (Laird et 
al., 1986), to infer these subgoal preconditions. 

A second research effort  which confronts the problem of  formulating learning 
tasks is Keller's research on contextual learning (Keller, 1983, 1985, 1986). In this 
work, Keller suggests how a problem solving system could itself formulate 
generalization problems such as those addressed by the LEX2 system. In particular, 
he shows how the task of  learning the goal concept USEFUL-OP3 arises as a subgoal 
in the process of  planning to improve performance at solving calculus problems. By 
reasoning from a top-level goal of  improving the efficiency of  the problem solver, 
as well as a declarative description of  the problem solving search schema, the method 
derives the subgoal of introducing a filter to prune the search moves that it considers. 
The definition of  this filter includes the specification that it is to allow only problem 
solving steps that are 'useful'  (i.e., that lead toward solutions). The subgoal of  
introducing this filter leads, in turn, to the problem of  operationalizing the definition 
of 'useful'  (i.e., to the subgoal corresponding to the LEX2 generalization task). 

Recent work by Kedar-Cabelli (1985) also addresses the problem of formulating 
learning tasks. In this work, Kedar-Cabelli proposes a system to automatically for- 
mulate definitions of  goal concepts in the domain of  artifacts. In particular, the 
proposed system derives functional definitions of  artifacts (e.g., CUP) from infor- 
mat ion  about the purpose for which agents use them (e.g., to satisfy their thirst). 
Given two different purposes for which an agent might use a cup (e.g., as an orna- 
ment, versus to satisfy thirst), two different functional definitions can be derived. 15 
"To derive the functional definition of the artifact, the proposed system first computes 
a plan of  actions that leads to satisfying the agent's goal. For example, if the agent's 
goal is to satisfy thirst, then this plan might be to POUR the liquids into the cup, 
GRASP the cup with the liquid in order to LIFT, and finally DRINK the liquids. In 
order to be used as part of  this plan, the artifact must satisfy the preconditions of 
those plan actions in which it is involved. These preconditions form the functional 
definition of  a cup: an open-vessel, which is stable, graspable, liftable. Thus, for- 
mulating functional definitions of  artifacts is accomplished by analyzing the role that 
the artifact plays in facilitating the goal of  some agent. 

15 This extends Winston's work (see Section 3.1), in that it can derive its own goal concept from a given 
purpose. 
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4.2.4 Using contextual knowledge to solve the generalization task 

Above we have discussed some approaches to automatically formulating learning 
tasks, given knowledge of the performance task for which the learning takes place. 
In cases where the learner formulates its own learning task, information about how 
and why the task was formulated can provide important guidance in solving the 
learning task. Keller's (1986) METALEX system provides an example of how such 
information can be used in guiding learning. Like LEX2, METALEX addresses the 
learning task of operationalizing the goal concept USEFUL-OP3. It takes as input 
a procedural representation of the performance task to be improved (the calculus 
problem solver), a specification of the performance objectives to be achieved 
('minimize problem solving time') and knowledge of the performance improvement 
plan (search space pruning via filtering), which is a record of how the operationaliza- 
tion task was originally formulated. METALEX uses this additional knowledge 
about the context in which its learning task was formulated to guide its search for 
an operational transformation of the goal concept. Specifically, it executes the 
calculus problem solver using the initial (and subsequent intermediary) definitions of 
the goal concept to collect diagnostic information which aids in operationalizing the 
goal concept if performance objectives are not satisfied. 

In effect, the performance task and performance objective inputs required by 
METALEX elaborate on the operationality criterion required by the EBG method. 
Instead of evaluating operationality in terms of a binary-valued predicate over con- 
cept definitions (as in EBG), METALEX evaluates the degree of operationality of 
the concept definition in relation to the performance task and objective. This ability 
to make a more sophisticated analysis of operationality enables METALEX to make 
important distinctions among alternative concept definitions. For example, because 
METALEX uses approximating (non truth-preserving) transforms to modify the 
goal concept, it can generate concept definitions that only approximate the goal con- 
cept. In such cases, METALEX is able to determine whether such an approximate 
concept definition is desirable based on the degree to which it helps improve the per- 

formance objectives. 

As the first sections of this paper demonstrate, explanation-based generalization 
methods offer significant promise in attempts to build computer models of learning 
systems. Significant progress has been made in understanding explanation-based 
generalization, especially for problems in which the learner possesses a complete and 
correct theory. As the final section illustrates, much more remains to be discovered 
about how a learner can use what it already knows to guide the acquisition of new 

knowledge. 
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Appendix 

The appendix describes DeJong's research on explanation-based generalization. In 
particular, it casts the work on learning schemata for story understanding in terms 
of  the EBG method. In addition to this project, there has been a great deal of recent 
research on explanation-based generalization, including (DeJong, 1985; Ellman, 
1985; Mooney, 1985; O'Rorke,  1985; Rajamoney, 1985; Schooley, 1985; Segre, 
1985; Shavlik, 1985; Sims, 1985; Watanabe, 1985; Williamson, 1985). 

DeJong (1981, 1983) developed one of  the earliest successful explanation-based 
generalization systems as part of  his research on explanatory schema acquisition. 
DeJong is interested in the problem of  learning schemata for use in natural language 
story understanding. DeJong's system takes as input an example story and produces 
as output a generalized schema representing the stereotypical action sequence that is 
instantiated in the story. For example, the system can process the following story 
(adapted from G. DeJong, personal communication, November 16, 1984): 

Fred is Mary's father. Fred is rich. Mary wears blue jeans. John approached Mary. 
He pointed a gun at her. He told her to get into his car. John drove Mary to the 
hotel. He locked her in his room. John called Fred. He told Fred he had Mary. 
He promised not to harm her if Fred gave him $250,000 at Treno's  Restaurant. 
Fred delivered the money. Mary arrived home in a taxi. 



76 T.M. MITCHELL, R.M. KELLER AND S.T. KEDAR-CABELLI 

It then produces as output a generalized schema for K I D N A P P I N G .  The 
K I D N A P P I N G  schema contains only the relevant details of  the kidnapping (e.g., 
that three people are involved: Person A who wants money, Person B who has money 
and Person C who is valued by Person B), but none of the irrelevant details (e.g., 
that Person C wears blue jeans). 

DeJong 's  system uses a generalization method that closely parallels the EBG 
method. Although there is no direct counterpart  to the goal concept in DeJong 's  
system, the goal concept can be thought of  as ' the class of  action sequences that 
achieve personal goal X for actor Y. '  For the kidnapping story, the actor 's  personal 
goal is 'a t ta inment  of  wealth. '  The system constructs an explanation for how the 
actions in the story lead to the kidnapper 's  'a t ta inment  of  wealth'  as a by-product 
of  the story-understanding process. During the story parse, data dependency links 
are created to connect actions in the story with the inference rules that are used by 
the parser in interpreting the actions. The set of  inference rules constitutes a domain 
theory for DeJong 's  system, and includes knowledge about  the goals and plans of  
human actors, as well as causal knowledge used to set up and verify expectations for 
future actions. The network of  all the data dependency links created during the story 
parse is called an inference justification network, and corresponds to an explanation 
for the action sequence. 

Generalization of  the inference justification network is carried out by replacing 
general entities for the specific objects and events referenced in the network. As with 
the EBG method,  the entities in the inference justification network are generalized 
as far as possible while maintaining the correctness of  the data dependency links.16 
Then a new schema is constructed from the network. The issue of operationality 
enters into the process of  determining an appropriate  level of  generalization for the 
schema constructed f rom the network. Should, for example, a generalized schema 
be created to describe the K I D N A P P I N G  action sequence or the more general action 
sequences representing B A R G A I N I N G - F O R - M O N E Y  or BARGAINING-FOR-  
W E A L T H ?  All of  these schemata explain the actions in the example story. DeJong 
cites several criteria to use in determining the level of  generalization at which to repre- 
sent the new schema (DeJong, 1983). The criteria include such considerations as: 1) 
Will the generalized schema be useful in processing stories in the future, or does the 
schema summarize an event that is unlikely to recur? 2) Are the preconditions for 
schema activation commonly achievable? 3) Will the new schema represent a more 
efficient method of  achieving personal goals than existing schemata? Note that these 
schema generalization criteria roughly correspond to the operationalization criteria 
used in the EBG method. Because the generalized schemata are subsequently used 
for a story-understanding task, the operationality criteria pertain to that task. 

16 It is unclear whether the system regresses its equivalent of the goal concept through the inference 
justification network. 
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Table 5. The wealth acquisition schema generalization problem: Learning about ways to achieve wealth 
(DeJong, 1983) 

Given: 

• Goal Concept: The class of  action sequences (i.e., a general schema) by which actor x can achieve 
wealth: 

WEALTH-ACQUISITION-ACTION-SEQUENCE (<  a l, a2 . . . . .  an > ,  x) ¢* 
NOT (WEALTHY (x, sO)) A WEALTHY (x, EXECUTE (x, < a l ,  a2 . . . . .  a n > ,  sO)) 

where 

< a l ,  a2, . . . ,  a n >  is an action sequence; x is the actor; sO is the actor 's current state; and EXE- 
CUTE (a, b, c) returns the state resulting from the execution of  action sequence b by actor a in state 
C. 

• Training Example: The kidnapping story: 
FATHER-OF (FRED, MARY) A WEALTHY (FRED) 

A DESPERATE (JOHN) A WEARS (MARY, BLUE-JEANS) 
A APPROACHES (JOHN, MARY, sO) A POINTS-GUN-AT (JOHN, MARY, sl) 

A EXCHANGES (FRED, JOHN, $250000, MARY, s12) 
• Domain Theory: Rules about human interaction, and knowledge about human goals, intentions, 

desires, etc.: 
FATHER-OF (personl,  person2) --, LOVES (personl,  person 2) 

/x VALUES (personl,  person2) 
WEALTHY (person) --' HAS (person, $250000) 
EXCHANGES (person 1, person2, object1, object2) ¢* 

NOT (HAS (personl,  objectl)) A VALUES (personl,  objectl) 
^ NOT (HAS (person2, object2)) A VALUES (person2, object2) 
^ HAS (person1, object2)/x HAS (person2, objectl) 

• Operationality Criterion: Acquired generalization (i.e., the generalized schema) must satisfy the re- 
quirements for future usefulness in story-understanding (see text). 

Determine: 

• A generalization of  training example (i.e., a generalized schema) that is a sufficient concept defini- 
tion for the goal concept (i.e., that is a specialization of  the wealth acquisition schema) and that 
satisfies the operationality criterion. 

Table 5 summarizes the explanation-based generalization problem addressed by 
the explanatory schema acquisition research. 
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