
“Freecell” Neural Network Heuristics 

Alphonsus’Dunphy, Malcolm I. Heywood 
Dalhousie University, 

Faculty of Computer Science, 
6050 University Avenue, Halifax, Nova Scotia. B3H 1W5 

Absiract- In areas, such as planning, state space searches are 
often conducted to find solutions. Usually, the heuristic is 
derived from knowledge of the domain. In many cases the 
knowledge of a domain Is limited or the domain is so complex 
that an effective heuristic cannot be formulated. As an 
alternative, machine-learning techniques such as neural 
networks may be used to derive the heuristic. The game of 
FreeCell was selected as a suitable benchmark domain, in which 
“knowledge based heuristics” and “neural heuristics” were 
employed to find solutions for randomly generated games. An 
amalgamation of the two, in which the neural network 
developed a heuristic from several knowledge based heuristics, 
was also used. Of the neural derived heuristics, the best-case 
architecture did not employ the “knowledge based heuristics.” 
Moreover, neural heuristics were not able to improve upon those 
defined a priori. 

Index ierms-Benchmarking, State Space Search, Search 
heuristics, MLP, SOM. 

I. INTRODUCTION 
FreeCell is a popular card solitaire game invented by 

Paul’ Alfille in 1978 [I] .  Its inclusion in P C  operating 
systems has enhanced its popularity and there are several 
tournaments in which FreeCell enthusiasts participate. Its 
simplicity of rules and its diverse number of games and 
solutions make it suitable for heuristic search techniques. 
Since games are diverse, with 1.68038x1066 possible initial 
card layouts, basic searches such as breadth and depth first 
are ineffective. 

The playing rules of FreeCell game are straightforward. 
The deck is the standard deck of 52 cards. The cards - ace, 
deuce, three to ten, jack, queen, king - are ranked 1 to 13 
respectively, with 1 being the lowest rank. The color of the 
suits, vhearts and +diamonds, is red; the color of the suits, 
&spades and *clubs, is black. The arrangement of the cards 
is as follows: 

8 container stacks or columns of unlimited size, into 
which a standard deck of 52 cards is, at the beginning of 
the game, randomly placed face up with 7 cards in the 
first four stacks and 6 in the remaining four. 
4 free cells, which are allowed to contain a single card. 
4 collector stacks into which all cards are eventually 
collected. 

In FreeCell literature the stacks and cells are often 
referred to as tableau piles, cells, and foundation piles 
respectively [Z]. The object of the game is to  relocate all 

cards of the container stacks to the collector stacks. Each 
card may be moved according to the following rules: 

A card may be moved from a free cell or container stack 
into a second container stack if the receiving container 
stack is empty or if the card is different in color and one 
rank below the top card of the receiving stack. 
A card may be moved from a container stack (or a free 
cell) to a free cell if the free cell is empty. 
A card may be moved from a container stack or free cell 
to a collector stack if the card is an ace and the receiving 
stack is empty or if the card is of the same suit and one 
rank above the top card in the collector stack. 

Once a card has been placed in a collector stack it cannot be 
removed. 

Many programs, with diverse names such as Freecell 
Pro [3], Xcell [4], FreecellTool [ 5 ] ,  and AuioFree [6], have 
been written to automatically solve Freecell. Some use 
specifically developed algorithms, while others use state 
space searches such as heuristic search and A* Search. 
Normally, the heuristic is based on knowledge of the 
FreeCell game. Few, if any, use machine-learning techniques 
such as neural networks. Since games are diverse and a large 
number of attributes are necessary to describe a layout, it 
would be difficult to train a neural network to solve the game 
directly by predicting a move for each possible layout. An 
alternative would be to train a neural network to calculate a 
heuristic to direct a best-first search. In a similar fashion, 
Chellapilla and Fogel use neural networks to evaluate board 
positions in the game of checkers [7, pp 1482-14951. This is 
the approach employed here. Moreover, the specific interest 
is to identify the significance, if any, of different neural 
network architectures, relative to a baseline of performance 
established by a priori defined heuristics or “knowledge 
based heuristics”, in both places applied in conjunction with 
a state space search. 

The paper is organized as follows: Section I1 defines the 
state space approach within the context of the FreeCell 
game, and introduces the “knowledge based” heuristics. 
Section 111 provides the methodology utilized to define the 
neural network architectures and representation of the input 
space. The associated neural network learning algorithms are 
defined in Section IV, whereas Section V describes the 
results. Conclusions are drawn in Section VI. 
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11. STATE SPACE SEARCH 
FreeCell was ‘solved’ by a best-first or heuristic search. 

The heuristic search is a state space search conducted 
through a tree or graph of nodes. In Freecell, each state or 
node is a card layout of the game. The initially dealt hand is 
the start node or first node of the search. The goal node is 
the node at which all cards have been placed in the collector 
stacks and which signifies that a solution has been found. 
Successor nodes are the possible card layouts that can be 
generated from a node by making all legal moves. The 
parent node is the node from which successor nodes are 
generated. The heuristic value of a node is the estimated cost 
of reaching the goal node from the node. In FreeCell the cost 
of a move is unity and, hence, the heuristic value is generally 
the number of moves required to reach the goal node. 
However, it may also be an arbitrary value that tends to 
decrease as the distance from the goal node decreases. 

An open node is one that has not been reached in the 
search, while a closed node is one that has been searched. 
OPEN and CLOSED are lists of nodes. A solution is the 
path from the start node to the goal node. 

A simplification of a best-first search is as follows (8, pp 
92-93]: 
1. Start with OPEN = start node; 
2. While (node f Goal) OR (OPEN == 0)  

a. Pick node on OPEN with best heuristic value and 
move node to CLOSED: 

b. Generate Successor Nodes; 
c. For (all Successor Nodes) 

i. Calculate heuristic value and add node to OPEN; 
ii. If generated before, change the parent node for a 

better path; 
3. A solution, if it exists, is the path from the start to the goal 

node. 
Only single moves were used to generate successor 

nodes. Super or meta moves were not used. A super or meta 
move is a series of several legal single moves, which can 
transport a sequence of several cards from one collector 
stack to another. Naturally, the performance of the best-first 
search is strongly influenced by the heuristic employed. To 
this end the following 5 knowledge-based heuristics are 
defined. 

A .  Number of Cards Collected (NCC) 
The number of cards that have been collected is an 

indicator, albeit a weak one. of progress in the search for a 
solution. The negative of the number of cards that have been 
moved to the collector stacks can serve as a heuristic. 

B. Disrance of Node from Goal (NfG) 
This metric basically sums the number of cards between 

the position of each card in the node under consideration and 
the position of that card in the goal node. When the distance 
has been ‘calculated for a ’  card, that card is considered 

removed from the container stack of the node under 
consideration and will not be used in calculations for the 
remaining cards: A card that has already been moved from a 
container stack is obviously not blocking any others. If the 
node already has cards in the collector stacks, then the 
distance for these cards is 0. If the node has a card in a free 
cell, than the distance for that card is 1. 

C. Rank Order (RO) 
Games, which have a high. degree of card order in the 

container stacks, tend to be easier to solve and, hence, closer 
to the goal node. One means of estimating the order or (lack 
of order) is to estimate the difficulty to sort the cards in the 
collector stacks. Hence, the card order heuristic is the sum of 
the number of moves that it would take to sort the cards of 
each container stack in ascending order of rank (from top to 
bottom) ignoring card suit. 

D. Sequence Order (SO) 
This heuristic measures the order of ‘the cards in the 

container stacks of the node in terms of both rank and color. 
To do so, the sum of costs of the cards is estimated as 
follows: 
1. If, in a container stack, a card and the one above is in 

proper rank and color sequence such as a black 2 on a 
red 3, a negative cost equal to the depth of the card is 
assigned; 
If the rank sequence is correct but the color sequence is 
incorrect, then (the difference in rank + 1) assigned as a 
cost; 
If the rank sequence is incorrect and the above card is 
higher in rank, (the difference in rank - 1) x the depth 
of the card is assigned as a cost. 
If the rank sequence is incorrect and the above card is 
equal or lower in rank, (the difference in rank + 1) is 
assigned as a cost. 

E. Problem Reduction (PR) 

2. 

3. 

4. 

Often a good heuristic for a search is the number of 
moves required to complete the search for a simplified 
version of the node. One means of simplifying a FreeCell 
node is to add an unlimited number of free cells. To solve 
the simplified version, low ranking cards are collected after 

.continually moving covering cards to free cells. Each 
movement of a card from a container stack or free cell to a 
collector stack or from a container stack to a free cell is 
considered a single move. The heuristic of the original node 
is the number of moves it would take to reach the goal node 
from the simplified node. Since the heuristic is close to 
being admissible, this heuristic is useful in finding short 
solutions via an A* Search [8, pp 96-1011. 
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111. NEURAL NETWORKS 

Instead of using the above knowledge-based heuristics, 
neural networks were used to calculate the heuristic value. 
That is to say, the search for a FreeCell solution is conducted 
in exactly the same manner as described previously, with the 
neural network calculating the heuristic value used in the 
search. Training data for the neural network would consist of 
previously solved FreeCell games with a coding scheme to 
describe the current state and the number of moves to 
complete the game as the target. Naturally, many options 
exist in terms of different neural network learning 
algorithms. However, in this work, our principle interest lies 
in the contribution of different architectures and the input 
space employed. To this end, three different architectures are 
considered. 

Firstly, architecture 1, a single neural network, is used to 
find suitable search heuristics based on the card layout. This 
represents the neural network base line, as no a p  riori 
information to encourage modular problem solving is 
incorporated [9]. Architecture 2 uses the knowledge-based 
heuristics from Section I1 as the input to the neural network. 
The question being, can a neural network learn to combine 
heuristics without recourse to the card layout? A 
combination of card layout and heuristics is considered to 
result in an undesirably large input space. In the final case, 
architecture 3, card layout is retained as the input, hut two 
neural networks are employed, one to perform feature 
extraction and one to make the heuristic. 

In all the above architectures, Multi-layer Perceptrons 
(MLP) with one hidden layer are employed for identifying 
the heuristics; Architectures 1 and 2. Architecture 3 utilizes 
a Self Organizing feature Map (SOM) to perform the feature 
extraction. Moreover, the SOM output provided to the 
following MLP takes the form of the quantized (real valued) 
SOM outputs, Section IV. 

A. Encoding the Input Space 
The selection of attributes of the domain is critical to the 

performance of a neural network. The training time, the 
ability of the network to generalize, and the minimum mean 
square error ( M E )  are affected by the choice of attributes. 
FreeCell is, especially, problematic since there are numerous 
ways of encoding to produce layout patterns. In the case of 
this work we consider there to be two basic schemes: cell 
content or card location. 

The FreeCell game is described in terms of labeled cells 
that can contain a card. The  attributes are variables 
describing the card in a particular location. For a cell content 
encoding, two attributes are used to describe the card in a 
cell. One integer describes the suit of a card and a second 
describes the rank of the card. In the case of the card 
location scheme, there is one attribute per card, which 
identifies the card location. 

Experiments using various coding schemes were 
conducted. The most successful and the one chosen to 
encode the training and test data for FreeCell was the Cell 
Content scheme, in which 2 attributes described the location 
of all cards, including those in the collector stacks. The 
success of the Cell Content scheme as compared to the Card 
Location scheme is not surprising, if we view the schemes in 
human terms. The Cell content scheme clearly displays the 
sequence of cards in the stacks; whereas in the Card 
Location scheme the sequences are not apparent. 

E. Training and Test Data 
Generating FreeCell solutions to train neural networks is 

a cumbersome process. Ideally, solutions should be perfect, 
that is, the solutions should contain the minimum number of 
moves. A breadth first search would generate optimal 
solutions. However, these are impractical on a FreeCell 
game using the full 52-card deck. Even with reduced games 
of 24 and 32 card configurations, which contain cards of 3 
suits in rank ace to 8 and cards of 4 suits in rank ace to 8 
respectively, breadth-first search is unfeasible. That is, tens 
of thousands of nodes would be generated requiring 
unattainable memory and CPU requirements. However, for 
the 24 and 32 card configurations it was still relatively easy 
to generate test data. An A* Search using the PR heuristic 
attains nearly optimal solutions. Only on rare occasions, less 
than I%, in testing on the simple 14-card game would a 
solution be one greater than that found by a breadth first 
search. Therefore, the 32 Card Deck, which is sufficiently 
complex, was chosen as the domain for analysis. 

C. 32 Card Deck Domain 
The layout of the 32 Card FreeCell game and the number 

of attributes in the Cell Content coding scheme required to 
describe each state is as follows: 

5 container stacks, each large enough to contain at least 
8 cards. The number of attributes = ( 5 x 8 ~ 2 ) ~  80. 
4 free cells. The number of attributes = (4xlx2)= 8. 
4 collector stacks, each to contain the 8 cards of each 
suit for the solved game. The number of attributes = 
(4X8X2)= 64. 

A total of 152 attributes are required. 

IV. LEARNING ALGORI’TWMS 

A. Selforganizing Feature Map 
Kohonen’s Self-organizing Feature Map (SOM) 

algorithm is an unsupervised learning algorithm in which an 
initially ‘soft’ competition takes place between neurons to 
provide a topological arrangement between neurons at 
convergence [IO]. The learning process is summarized as 
follows, 
1. Assign random values to the network weights, wu; 
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2. 

3. 

4. 

5 

Present an input pattern, x, in this case a series of taps 
taken from the shift register providing the 
‘reconstruction’ state space on which the SOM is to 
provide a suitable quantized approximation. 
Calculate the distance between pattern, x, and each 
neuron weight wj, and therefore identify the winning 
neuron, or 

d = minix j - wjII} (1) 

where 11.11 is the Euclidean norm and wj is the weight 
vector of neuron j: 
Adjust all weights in the neighborhood of the winning 
neuron, or 

w~(~+l)=w~(f)+~(f)~(~,f)~xi(f)-w~(r)~ (2) 
where q(t) is the learning rate at epoch t ;  and K(j, t )  is a 
suitable neighborhood function, in this case of a 
Gaussian nature; 
Repeat steps (2) - (4) until the convergence criteria is 
satisfied. 

Following convergence. Dresentation of an inout vector. 0 ~- . .  ~~ 

x, results in a corresponding output vector, d ,  the Euclidian 
distance between each neuron and input or quantization 
error. It is this concept of quantization error at each neuron 
which is forwarded to the following MLP. 

B. Multilayer Perceptron 
Various learning algorithms where evaluated including 

the LMS algorithm with adaptive learning rates and 
momentum and second order derivative approaches [I I]. In 
this case, best results where achieved using second order 
derivatives as estimated using the Levenberg-Marquardt 
quasi-Newton method (‘trainlm’ in MatlabTM [ 121). 
Specifically, the back propagation algorithm popularized the 
utilization of gradient methods for training MLP networks 
[13]. Weight updates, Aw, take the form of a gradient vector, 
J - changes in the sum square error, E, with respect to 
weights, w - and expanded in terms of the chain rule to 
provide the ‘back propagation’ across multiple layers. 
However, second order methods have the potential to provide 
a faster learning algorithm if efficient estimation of the 
Hessian matrix, H ,  is possible. In this case the gradient 
vector, H = J’J, approximates the Hessian. The Levenberg- 
Marquardt algorithm [I41 then employs a combination of this 
Hessian approximation with a quasi-Newton gradient update 
scheme and a suitable annealing schedule to control the 
adaptation of the learning rate parameter, q, as follows, 

Aw = - [J’J + qII-’J 
The selection bf the learning rate parameter, q. enables 

variation between the special cases of gradient decent (q + 
1) or Newton’s method (q + 0), where the latter is most 
desirable when an error minimum is encountered. The 
MatlabTM ‘trainlm’ routine employs one of two multipliers to 
update the learning rate at each epoch [ll], depending on 

whether the last epoch resulted in an error decrease (q(t + 1) 
= a x q(t)) or an error increase (q(t + 1) = x q(t)). 

V. RESULTS 

For neural training purposes 101 games comprised of 
4852 patterns, generated using the Reduction heuristic of 
Section ILE, were utilized. Each pattern represents a node or 
move in a game. An additional 1000 games, again generated 
with the Reduction heuristic, served as data to test the 
networks. If the search was not completed before 5000 
nodes were generated, the search was terminated and the 
search deemed to have failed. Normally, the unit of testing is 
the pattern, in which a neural network is judged by the 
proximity to which it calculates the target from a pattern. 
However, in FreeCell a network is judged by performance 
on solving FreeCell games. In all cases the Neural Network 
toolbox of MatlabTM was employed [ 121. 

A .  Performance metria 
The performance of any approach - knowledge based or 

neural network - is evaluated in terms of two basic .search 
parameters: Efficiency and Effectiveness. 
I )  Eficiency: expresses the number of nodes closed as the 
number of nodes from which successor nodes have been 
generated and which have been placed in the CLOSED list 
of nodes. A closed node is the one with the best heuristic 
value of those that have yet to he expanded. The ‘total 
number of nodes’ is the actual number of nodes that have 
been generated. Efficiency, therefore, measures the quality 
of the search algorithm and the heuristic. 
2) Effectiveness: measures the number of nodes contained in 
the solution or solution length. In FreeCell the solution 
length is the quality of the solution and corresponds to the 
number of moves to complete the game. The breadth-first 
search and A* Searches will find the optimal solution, if a 
solution exists. The “number of games so lved  is the number 
of games that could he  solved within the prescribed time 
frame (node generation limit of 5000). 

E. Network Topology 
Neural Network heuristics based on the MLP all utilize 

three hidden layer neurons, tansig activation function, and a 
single linear output neuron. MLP#I excludes attributes for 
the cards that have been placed in container stacks, whereas 
the patterns for MLP#2 include these attributes. Both 
MLP#l and #2 are representative of architecture 1. 

In the case of architecture 2, six knowledge-based 
heuristics are employed in conjunction with a multilayer 
perceplron, MLP#3. The first three are the Distance from 
Goal, Rank, and Sequence and the remaining three are 
variations of the Rank and Sequence heuristics. (Note the PR 
heuristic is used for directing the best-first search during 
creation of the datasets and, hence, cannot be employed as 
training data.) 
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Architecture 3 also utilizes a MLP with 3 hidden layer 
neurons. Three alternative SOM configurations - SOM#l, 
# 2  and #3 - are considered. SOM#I excludes attributes for 
the cards that have been placed in container stacks, whereas 
the patterns for SOM#2 and SOM#3 include these attributes. 
The topology of the map for SOM#I and S O M a  was 15 x 
7 hexagonal grid, whereas the topology of the map for 
SOM#3 was a 105 x 1 linear grid. 

C. Static Analysis 
Table 1 details the test set performance in terms of nodes 

closed, nodes open, and solutions found for heuristic and 
neural solutions. The simplest heuristic, the Number of 
Cards Collected Heuristic managed to solve 970 of the 1000 
test games, albeit it was the least effective. On average it 
searched 406.5 nodes to find solutions of average length 
152.2. The number of nodes closed is equivalent to the 
number of nodes searched. The other knowledge-based 
heuristics performed much better with the PR heuristic 
searching an average of 205.5 nodes to find solutions of 
average length 63.1. It solved 992/1000 or 99.2% of the 
games. 

TABLE I 
COMPARISON OFSEARCH HEURUT~CSON 1000 TESTGAMES 

Knowledge Based Heuristics 

Heuristic Nodes Nodes Solution Solution 
Avg. Avg. # Avg. 

Closed Open Found Length 
NCC 408.6 878.5 970 152.2 
NfG 205.5 448.7 994 64.4 
RO 203.0 494.9 990 64.7 
so 251.2 543.9 972 70.7 
PR 181.5 441.1 992 63.1 

Architecture 1 -Card layout, no independent feature extraction 
MLP#I 285.8 683.4 979 70.7 
MLP#2 353.2 960.4 983 93.7 

Architecture 2 -Heuristics, no input partitioning 
MLP#3 211.6 542.5 991 64.0 

Architecture 3 -Card layout, independent feature extraction 
SOM#I 241.1 600.4 990 67.0 
SOM#2 234.6 554.0 996 65.5 
SOM#3 208.4 502.8 992 62.7 

The performance of the architecture I neural networks - 
MLP#l and #2 - was significantly less than that of the 
knowledge based heuristics. MLP#I searched through an 
average of 285.8 nodes or 57% more than the PR heuristic. 
The higher performance of MLP#I, in comparison to 
MLP#2, on nodes closed and nodes open was probably 
attributable to having fewer attributes on which to converge. 
Architecture 2, MLP#3 - an amalgamation of 6 heuristics - 
tended to be biased toward the better performing heuristics. 

Architecture 3. the introduction of an SOM, is an 
improvement over a single MLP, whether the MLP is based 
on the card layout or heuristics. SOM#3 performs at a level 
approaching that of the “knowledge based heuristics.” The 

corresponding average nodes closed, 208.9, is near that of 
the Distance from Goal and Rank heuristics, whilst 
providing more and shorter solutions. SOM#2 and SOM#3, 
in which patterns contained attributes for all cards including 
those in the collector stacks, performed better than SOM#l. 

D. Generalization 
Further experiments were conducted on 100 randomly 

selected games with the objective of assessing the degree of 
generalization provided ,by SOM#2. To do so, new games 
were created from the original games, by swapping 
randomly selected pairs of cards. For each of these 100 
games, new games were generated by randomly swapping 
from 1 to 5 pairs of cards from the original game 
configuration, and then measuring performance in terms of 

I A’ A . J  

Fig. 1. Performance of SOMR following Random Swapping ( 
cards. X Axis: game i.d. Y Axis: log,, number of nodes closed. 

Figure I summarizes the experiments. The solid line 
represents the performance of S O M H  on the original 101 
games with 0 cards swapped. Altered games with 2 and 5 
cards swapped are identified as ‘*’ and ‘A’ respectively. Easy 
games are games that can be solved with a low number of 
closed nodes. Swaps to easier games such as games 1 to 10 
in Figure 1, result in comparable or more difficult games, 
require an equivalent or greater number of nodes closed to 
solve and generally fall above the solid line. As the original 
games become more difficult (games IO to 80, Figure 1). the 
swapped cards result in both more difficult and easier games. 
The ‘-’ and ‘A’ points fall both below and above the line. 
Swaps to the most difficult (games 80 to 100, Figure I )  tend 
to result in easier games. Most ‘a’ and ‘A’ points fall below 
the line. In summary, easy games become more difficult and 
more difficult games easier as cards are swapped. This 
supports the premise that the networks are providing general 
solutions that do not appear to be overtly sensitive to 
specific game layouts. 
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I 
ig. 2. SOM#2 on Nodes Closed for a 'Simple' Game. 

E. SOM dynamics 

Searches on 15 games were traced from neuron to neuron 
through the SOM identified as SOM#2. As each node is 
searched, the winning neuron for that node is calculated. 
Figure 2 and 3 contain traces of 2 games, one game solved in 
a low number of moves and a second game solved in a large 
number of moves. The SOM, used in training, was a 15 x 9. 
Numbers from 1 to 105 were arbitrarily used to label the 
neurons. Arrowheads indicate the direction of the solution. 
Consider a simple game. The initial card layout or node is 
located at neuron 91. The next node searched is located at 
neuron 62. The search gradually progresses through the 
SOM and eventually reached the final or goal at neuron 15. 
The most interesting feature of the trace is that solutions 
normally start at neuron 91, move across the SOM, and exit 
at neuron 15. It is understandable why the last winning 
neuron is always 15, since the goal node is always the same. 
However, a simple explanation for why solutions always 
start at neuron 91 is not obvious. Perhaps, the fact that the 
start node of all games has the same card positions tilled 
may influence the assignment of the winning neuron. 
Moreover, the initial configuration also represents the least 
organized, where this is identified by one neuron performing 
an averaging function. 

I I 

Complex or longer solutions, Figure 3, have many 
feedback and internal loops. The loops are generally in the 
early part of the solution. Once the solution approaches the 
winning goal the trace becomes less complex. This suggests 
that neurons may be overworked. Any technique that would 
spread the organization of attributes more evenly over the 
SOM would likely improve performance. 

VI. CONCLUSION 
Performance of neural network architectures is evaluated 

against a set of a priori selected knowledge based heuristics 
on a 32-card version of the FreeCell game. Particular 
emphasis is given to the evaluation and identification of 
appropriate neural architecture. A combination of SOM and 
single hidden layer multiplayer perceptron is found to 
provide competitive performance with the knowledge based 
heuristics. Trace analysis of the SOM once trained indicates 
that the SOM clearly partitions the problem into different 
stages of play. Moreover, the SOM. may well benefit from 
the ability to encode tempora1,relationships in an attempt to 
provide additional context to the current spatial encoding of 
the input space. 

In short, we believe that the FreeCell game provides a 
good benchmarking environment for a wide range of 
learning algorithms, providing both a concise definition and 
interesting spatial and temporal learning problems. 
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