
“Freecell” Neural Network Heuristics

Alphonsus’Dunphy, Malcolm I. Heywood
Dalhousie University,

Faculty of Computer Science,
6050 University Avenue, Halifax, Nova Scotia. B3H 1W5

Absiract- In areas, such as planning, state space searches are
often conducted to find solutions. Usually, the heuristic is
derived from knowledge of the domain. In many cases the
knowledge of a domain Is limited or the domain is so complex
that an effective heuristic cannot be formulated. As an
alternative, machine-learning techniques such as neural
networks may be used to derive the heuristic. The game of
FreeCell was selected as a suitable benchmark domain, in which
“knowledge based heuristics” and “neural heuristics” were
employed to find solutions for randomly generated games. An
amalgamation of the two, in which the neural network
developed a heuristic from several knowledge based heuristics,
was also used. Of the neural derived heuristics, the best-case
architecture did not employ the “knowledge based heuristics.”
Moreover, neural heuristics were not able to improve upon those
defined a priori.

Index ierms-Benchmarking, State Space Search, Search
heuristics, MLP, SOM.

I. INTRODUCTION
FreeCell is a popular card solitaire game invented by

Paul’ Alfille in 1978 [I] . Its inclusion in P C operating
systems has enhanced its popularity and there are several
tournaments in which FreeCell enthusiasts participate. Its
simplicity of rules and its diverse number of games and
solutions make it suitable for heuristic search techniques.
Since games are diverse, with 1.68038x1066 possible initial
card layouts, basic searches such as breadth and depth first
are ineffective.

The playing rules of FreeCell game are straightforward.
The deck is the standard deck of 52 cards. The cards - ace,
deuce, three to ten, jack, queen, king - are ranked 1 to 13
respectively, with 1 being the lowest rank. The color of the
suits, vhearts and +diamonds, is red; the color of the suits,
&spades and *clubs, is black. The arrangement of the cards
is as follows:

8 container stacks or columns of unlimited size, into
which a standard deck of 52 cards is, at the beginning of
the game, randomly placed face up with 7 cards in the
first four stacks and 6 in the remaining four.
4 free cells, which are allowed to contain a single card.
4 collector stacks into which all cards are eventually
collected.

In FreeCell literature the stacks and cells are often
referred to as tableau piles, cells, and foundation piles
respectively [Z]. The object of the game is to relocate all

cards of the container stacks to the collector stacks. Each
card may be moved according to the following rules:

A card may be moved from a free cell or container stack
into a second container stack if the receiving container
stack is empty or if the card is different in color and one
rank below the top card of the receiving stack.
A card may be moved from a container stack (or a free
cell) to a free cell if the free cell is empty.
A card may be moved from a container stack or free cell
to a collector stack if the card is an ace and the receiving
stack is empty or if the card is of the same suit and one
rank above the top card in the collector stack.

Once a card has been placed in a collector stack it cannot be
removed.

Many programs, with diverse names such as Freecell
Pro [3], Xcell [4], FreecellTool [5] , and AuioFree [6], have
been written to automatically solve Freecell. Some use
specifically developed algorithms, while others use state
space searches such as heuristic search and A* Search.
Normally, the heuristic is based on knowledge of the
FreeCell game. Few, if any, use machine-learning techniques
such as neural networks. Since games are diverse and a large
number of attributes are necessary to describe a layout, it
would be difficult to train a neural network to solve the game
directly by predicting a move for each possible layout. An
alternative would be to train a neural network to calculate a
heuristic to direct a best-first search. In a similar fashion,
Chellapilla and Fogel use neural networks to evaluate board
positions in the game of checkers [7, pp 1482-14951. This is
the approach employed here. Moreover, the specific interest
is to identify the significance, if any, of different neural
network architectures, relative to a baseline of performance
established by a priori defined heuristics or “knowledge
based heuristics”, in both places applied in conjunction with
a state space search.

The paper is organized as follows: Section I1 defines the
state space approach within the context of the FreeCell
game, and introduces the “knowledge based” heuristics.
Section 111 provides the methodology utilized to define the
neural network architectures and representation of the input
space. The associated neural network learning algorithms are
defined in Section IV, whereas Section V describes the
results. Conclusions are drawn in Section VI.

0-7803-7898-9/03/$17.00 Q2003 IEEE 2288

11. STATE SPACE SEARCH
FreeCell was ‘solved’ by a best-first or heuristic search.

The heuristic search is a state space search conducted
through a tree or graph of nodes. In Freecell, each state or
node is a card layout of the game. The initially dealt hand is
the start node or first node of the search. The goal node is
the node at which all cards have been placed in the collector
stacks and which signifies that a solution has been found.
Successor nodes are the possible card layouts that can be
generated from a node by making all legal moves. The
parent node is the node from which successor nodes are
generated. The heuristic value of a node is the estimated cost
of reaching the goal node from the node. In FreeCell the cost
of a move is unity and, hence, the heuristic value is generally
the number of moves required to reach the goal node.
However, it may also be an arbitrary value that tends to
decrease as the distance from the goal node decreases.

An open node is one that has not been reached in the
search, while a closed node is one that has been searched.
OPEN and CLOSED are lists of nodes. A solution is the
path from the start node to the goal node.

A simplification of a best-first search is as follows (8, pp
92-93]:
1. Start with OPEN = start node;
2. While (node f Goal) OR (OPEN == 0)

a. Pick node on OPEN with best heuristic value and
move node to CLOSED:

b. Generate Successor Nodes;
c. For (all Successor Nodes)

i. Calculate heuristic value and add node to OPEN;
ii. If generated before, change the parent node for a

better path;
3. A solution, if it exists, is the path from the start to the goal

node.
Only single moves were used to generate successor

nodes. Super or meta moves were not used. A super or meta
move is a series of several legal single moves, which can
transport a sequence of several cards from one collector
stack to another. Naturally, the performance of the best-first
search is strongly influenced by the heuristic employed. To
this end the following 5 knowledge-based heuristics are
defined.

A . Number of Cards Collected (NCC)
The number of cards that have been collected is an

indicator, albeit a weak one. of progress in the search for a
solution. The negative of the number of cards that have been
moved to the collector stacks can serve as a heuristic.

B. Disrance of Node from Goal (NfG)
This metric basically sums the number of cards between

the position of each card in the node under consideration and
the position of that card in the goal node. When the distance
has been ‘calculated for a ’ card, that card is considered

removed from the container stack of the node under
consideration and will not be used in calculations for the
remaining cards: A card that has already been moved from a
container stack is obviously not blocking any others. If the
node already has cards in the collector stacks, then the
distance for these cards is 0. If the node has a card in a free
cell, than the distance for that card is 1.

C. Rank Order (RO)
Games, which have a high. degree of card order in the

container stacks, tend to be easier to solve and, hence, closer
to the goal node. One means of estimating the order or (lack
of order) is to estimate the difficulty to sort the cards in the
collector stacks. Hence, the card order heuristic is the sum of
the number of moves that it would take to sort the cards of
each container stack in ascending order of rank (from top to
bottom) ignoring card suit.

D. Sequence Order (SO)
This heuristic measures the order of ‘the cards in the

container stacks of the node in terms of both rank and color.
To do so, the sum of costs of the cards is estimated as
follows:
1. If, in a container stack, a card and the one above is in

proper rank and color sequence such as a black 2 on a
red 3, a negative cost equal to the depth of the card is
assigned;
If the rank sequence is correct but the color sequence is
incorrect, then (the difference in rank + 1) assigned as a
cost;
If the rank sequence is incorrect and the above card is
higher in rank, (the difference in rank - 1) x the depth
of the card is assigned as a cost.
If the rank sequence is incorrect and the above card is
equal or lower in rank, (the difference in rank + 1) is
assigned as a cost.

E. Problem Reduction (PR)

2.

3.

4.

Often a good heuristic for a search is the number of
moves required to complete the search for a simplified
version of the node. One means of simplifying a FreeCell
node is to add an unlimited number of free cells. To solve
the simplified version, low ranking cards are collected after

.continually moving covering cards to free cells. Each
movement of a card from a container stack or free cell to a
collector stack or from a container stack to a free cell is
considered a single move. The heuristic of the original node
is the number of moves it would take to reach the goal node
from the simplified node. Since the heuristic is close to
being admissible, this heuristic is useful in finding short
solutions via an A* Search [8, pp 96-1011.

2289

111. NEURAL NETWORKS

Instead of using the above knowledge-based heuristics,
neural networks were used to calculate the heuristic value.
That is to say, the search for a FreeCell solution is conducted
in exactly the same manner as described previously, with the
neural network calculating the heuristic value used in the
search. Training data for the neural network would consist of
previously solved FreeCell games with a coding scheme to
describe the current state and the number of moves to
complete the game as the target. Naturally, many options
exist in terms of different neural network learning
algorithms. However, in this work, our principle interest lies
in the contribution of different architectures and the input
space employed. To this end, three different architectures are
considered.

Firstly, architecture 1, a single neural network, is used to
find suitable search heuristics based on the card layout. This
represents the neural network base line, as no a p riori
information to encourage modular problem solving is
incorporated [9]. Architecture 2 uses the knowledge-based
heuristics from Section I1 as the input to the neural network.
The question being, can a neural network learn to combine
heuristics without recourse to the card layout? A
combination of card layout and heuristics is considered to
result in an undesirably large input space. In the final case,
architecture 3, card layout is retained as the input, hut two
neural networks are employed, one to perform feature
extraction and one to make the heuristic.

In all the above architectures, Multi-layer Perceptrons
(MLP) with one hidden layer are employed for identifying
the heuristics; Architectures 1 and 2. Architecture 3 utilizes
a Self Organizing feature Map (SOM) to perform the feature
extraction. Moreover, the SOM output provided to the
following MLP takes the form of the quantized (real valued)
SOM outputs, Section IV.

A. Encoding the Input Space
The selection of attributes of the domain is critical to the

performance of a neural network. The training time, the
ability of the network to generalize, and the minimum mean
square error (M E) are affected by the choice of attributes.
FreeCell is, especially, problematic since there are numerous
ways of encoding to produce layout patterns. In the case of
this work we consider there to be two basic schemes: cell
content or card location.

The FreeCell game is described in terms of labeled cells
that can contain a card. The attributes are variables
describing the card in a particular location. For a cell content
encoding, two attributes are used to describe the card in a
cell. One integer describes the suit of a card and a second
describes the rank of the card. In the case of the card
location scheme, there is one attribute per card, which
identifies the card location.

Experiments using various coding schemes were
conducted. The most successful and the one chosen to
encode the training and test data for FreeCell was the Cell
Content scheme, in which 2 attributes described the location
of all cards, including those in the collector stacks. The
success of the Cell Content scheme as compared to the Card
Location scheme is not surprising, if we view the schemes in
human terms. The Cell content scheme clearly displays the
sequence of cards in the stacks; whereas in the Card
Location scheme the sequences are not apparent.

E. Training and Test Data
Generating FreeCell solutions to train neural networks is

a cumbersome process. Ideally, solutions should be perfect,
that is, the solutions should contain the minimum number of
moves. A breadth first search would generate optimal
solutions. However, these are impractical on a FreeCell
game using the full 52-card deck. Even with reduced games
of 24 and 32 card configurations, which contain cards of 3
suits in rank ace to 8 and cards of 4 suits in rank ace to 8
respectively, breadth-first search is unfeasible. That is, tens
of thousands of nodes would be generated requiring
unattainable memory and CPU requirements. However, for
the 24 and 32 card configurations it was still relatively easy
to generate test data. An A* Search using the PR heuristic
attains nearly optimal solutions. Only on rare occasions, less
than I%, in testing on the simple 14-card game would a
solution be one greater than that found by a breadth first
search. Therefore, the 32 Card Deck, which is sufficiently
complex, was chosen as the domain for analysis.

C. 32 Card Deck Domain
The layout of the 32 Card FreeCell game and the number

of attributes in the Cell Content coding scheme required to
describe each state is as follows:

5 container stacks, each large enough to contain at least
8 cards. The number of attributes = (5 x 8 ~ 2) ~ 80.
4 free cells. The number of attributes = (4xlx2)= 8.
4 collector stacks, each to contain the 8 cards of each
suit for the solved game. The number of attributes =
(4X8X2)= 64.

A total of 152 attributes are required.

IV. LEARNING ALGORI’TWMS

A. Selforganizing Feature Map
Kohonen’s Self-organizing Feature Map (SOM)

algorithm is an unsupervised learning algorithm in which an
initially ‘soft’ competition takes place between neurons to
provide a topological arrangement between neurons at
convergence [IO]. The learning process is summarized as
follows,
1. Assign random values to the network weights, wu;

2290

2.

3.

4.

5

Present an input pattern, x, in this case a series of taps
taken from the shift register providing the
‘reconstruction’ state space on which the SOM is to
provide a suitable quantized approximation.
Calculate the distance between pattern, x, and each
neuron weight wj, and therefore identify the winning
neuron, or

d = minix j - wjII} (1)

where 11.11 is the Euclidean norm and wj is the weight
vector of neuron j:
Adjust all weights in the neighborhood of the winning
neuron, or

w~(~+l)=w~(f)+~(f)~(~,f)~xi(f)-w~(r)~ (2)
where q(t) is the learning rate at epoch t ; and K(j, t) is a
suitable neighborhood function, in this case of a
Gaussian nature;
Repeat steps (2) - (4) until the convergence criteria is
satisfied.

Following convergence. Dresentation of an inout vector. 0 ~- . . ~~

x, results in a corresponding output vector, d , the Euclidian
distance between each neuron and input or quantization
error. It is this concept of quantization error at each neuron
which is forwarded to the following MLP.

B. Multilayer Perceptron
Various learning algorithms where evaluated including

the LMS algorithm with adaptive learning rates and
momentum and second order derivative approaches [I I]. In
this case, best results where achieved using second order
derivatives as estimated using the Levenberg-Marquardt
quasi-Newton method (‘trainlm’ in MatlabTM [121).
Specifically, the back propagation algorithm popularized the
utilization of gradient methods for training MLP networks
[13]. Weight updates, Aw, take the form of a gradient vector,
J - changes in the sum square error, E, with respect to
weights, w - and expanded in terms of the chain rule to
provide the ‘back propagation’ across multiple layers.
However, second order methods have the potential to provide
a faster learning algorithm if efficient estimation of the
Hessian matrix, H , is possible. In this case the gradient
vector, H = J’J, approximates the Hessian. The Levenberg-
Marquardt algorithm [I41 then employs a combination of this
Hessian approximation with a quasi-Newton gradient update
scheme and a suitable annealing schedule to control the
adaptation of the learning rate parameter, q, as follows,

Aw = - [J’J + qII-’J
The selection bf the learning rate parameter, q. enables

variation between the special cases of gradient decent (q +
1) or Newton’s method (q + 0), where the latter is most
desirable when an error minimum is encountered. The
MatlabTM ‘trainlm’ routine employs one of two multipliers to
update the learning rate at each epoch [ll], depending on

whether the last epoch resulted in an error decrease (q(t + 1)
= a x q(t)) or an error increase (q(t + 1) = x q(t)).

V. RESULTS

For neural training purposes 101 games comprised of
4852 patterns, generated using the Reduction heuristic of
Section ILE, were utilized. Each pattern represents a node or
move in a game. An additional 1000 games, again generated
with the Reduction heuristic, served as data to test the
networks. If the search was not completed before 5000
nodes were generated, the search was terminated and the
search deemed to have failed. Normally, the unit of testing is
the pattern, in which a neural network is judged by the
proximity to which it calculates the target from a pattern.
However, in FreeCell a network is judged by performance
on solving FreeCell games. In all cases the Neural Network
toolbox of MatlabTM was employed [121.

A . Performance metria
The performance of any approach - knowledge based or

neural network - is evaluated in terms of two basic .search
parameters: Efficiency and Effectiveness.
I) Eficiency: expresses the number of nodes closed as the
number of nodes from which successor nodes have been
generated and which have been placed in the CLOSED list
of nodes. A closed node is the one with the best heuristic
value of those that have yet to he expanded. The ‘total
number of nodes’ is the actual number of nodes that have
been generated. Efficiency, therefore, measures the quality
of the search algorithm and the heuristic.
2) Effectiveness: measures the number of nodes contained in
the solution or solution length. In FreeCell the solution
length is the quality of the solution and corresponds to the
number of moves to complete the game. The breadth-first
search and A* Searches will find the optimal solution, if a
solution exists. The “number of games so lved is the number
of games that could he solved within the prescribed time
frame (node generation limit of 5000).

E. Network Topology
Neural Network heuristics based on the MLP all utilize

three hidden layer neurons, tansig activation function, and a
single linear output neuron. MLP#I excludes attributes for
the cards that have been placed in container stacks, whereas
the patterns for MLP#2 include these attributes. Both
MLP#l and #2 are representative of architecture 1.

In the case of architecture 2, six knowledge-based
heuristics are employed in conjunction with a multilayer
perceplron, MLP#3. The first three are the Distance from
Goal, Rank, and Sequence and the remaining three are
variations of the Rank and Sequence heuristics. (Note the PR
heuristic is used for directing the best-first search during
creation of the datasets and, hence, cannot be employed as
training data.)

229 ‘1

Architecture 3 also utilizes a MLP with 3 hidden layer
neurons. Three alternative SOM configurations - SOM#l,
2 and #3 - are considered. SOM#I excludes attributes for
the cards that have been placed in container stacks, whereas
the patterns for SOM#2 and SOM#3 include these attributes.
The topology of the map for SOM#I and S O M a was 15 x
7 hexagonal grid, whereas the topology of the map for
SOM#3 was a 105 x 1 linear grid.

C. Static Analysis
Table 1 details the test set performance in terms of nodes

closed, nodes open, and solutions found for heuristic and
neural solutions. The simplest heuristic, the Number of
Cards Collected Heuristic managed to solve 970 of the 1000
test games, albeit it was the least effective. On average it
searched 406.5 nodes to find solutions of average length
152.2. The number of nodes closed is equivalent to the
number of nodes searched. The other knowledge-based
heuristics performed much better with the PR heuristic
searching an average of 205.5 nodes to find solutions of
average length 63.1. It solved 992/1000 or 99.2% of the
games.

TABLE I
COMPARISON OFSEARCH HEURUT~CSON 1000 TESTGAMES

Knowledge Based Heuristics

Heuristic Nodes Nodes Solution Solution
Avg. Avg. # Avg.

Closed Open Found Length
NCC 408.6 878.5 970 152.2
NfG 205.5 448.7 994 64.4
RO 203.0 494.9 990 64.7
so 251.2 543.9 972 70.7
PR 181.5 441.1 992 63.1

Architecture 1 -Card layout, no independent feature extraction
MLP#I 285.8 683.4 979 70.7
MLP#2 353.2 960.4 983 93.7

Architecture 2 -Heuristics, no input partitioning
MLP#3 211.6 542.5 991 64.0

Architecture 3 -Card layout, independent feature extraction
SOM#I 241.1 600.4 990 67.0
SOM#2 234.6 554.0 996 65.5
SOM#3 208.4 502.8 992 62.7

The performance of the architecture I neural networks -
MLP#l and #2 - was significantly less than that of the
knowledge based heuristics. MLP#I searched through an
average of 285.8 nodes or 57% more than the PR heuristic.
The higher performance of MLP#I, in comparison to
MLP#2, on nodes closed and nodes open was probably
attributable to having fewer attributes on which to converge.
Architecture 2, MLP#3 - an amalgamation of 6 heuristics -
tended to be biased toward the better performing heuristics.

Architecture 3. the introduction of an SOM, is an
improvement over a single MLP, whether the MLP is based
on the card layout or heuristics. SOM#3 performs at a level
approaching that of the “knowledge based heuristics.” The

corresponding average nodes closed, 208.9, is near that of
the Distance from Goal and Rank heuristics, whilst
providing more and shorter solutions. SOM#2 and SOM#3,
in which patterns contained attributes for all cards including
those in the collector stacks, performed better than SOM#l.

D. Generalization
Further experiments were conducted on 100 randomly

selected games with the objective of assessing the degree of
generalization provided ,by SOM#2. To do so, new games
were created from the original games, by swapping
randomly selected pairs of cards. For each of these 100
games, new games were generated by randomly swapping
from 1 to 5 pairs of cards from the original game
configuration, and then measuring performance in terms of

I A’ A . J

Fig. 1. Performance of SOMR following Random Swapping (
cards. X Axis: game i.d. Y Axis: log,, number of nodes closed.

Figure I summarizes the experiments. The solid line
represents the performance of S O M H on the original 101
games with 0 cards swapped. Altered games with 2 and 5
cards swapped are identified as ‘*’ and ‘A’ respectively. Easy
games are games that can be solved with a low number of
closed nodes. Swaps to easier games such as games 1 to 10
in Figure 1, result in comparable or more difficult games,
require an equivalent or greater number of nodes closed to
solve and generally fall above the solid line. As the original
games become more difficult (games IO to 80, Figure 1). the
swapped cards result in both more difficult and easier games.
The ‘-’ and ‘A’ points fall both below and above the line.
Swaps to the most difficult (games 80 to 100, Figure I) tend
to result in easier games. Most ‘a’ and ‘A’ points fall below
the line. In summary, easy games become more difficult and
more difficult games easier as cards are swapped. This
supports the premise that the networks are providing general
solutions that do not appear to be overtly sensitive to
specific game layouts.

2292

I
ig. 2. SOM#2 on Nodes Closed for a 'Simple' Game.

E. SOM dynamics

Searches on 15 games were traced from neuron to neuron
through the SOM identified as SOM#2. As each node is
searched, the winning neuron for that node is calculated.
Figure 2 and 3 contain traces of 2 games, one game solved in
a low number of moves and a second game solved in a large
number of moves. The SOM, used in training, was a 15 x 9.
Numbers from 1 to 105 were arbitrarily used to label the
neurons. Arrowheads indicate the direction of the solution.
Consider a simple game. The initial card layout or node is
located at neuron 91. The next node searched is located at
neuron 62. The search gradually progresses through the
SOM and eventually reached the final or goal at neuron 15.
The most interesting feature of the trace is that solutions
normally start at neuron 91, move across the SOM, and exit
at neuron 15. It is understandable why the last winning
neuron is always 15, since the goal node is always the same.
However, a simple explanation for why solutions always
start at neuron 91 is not obvious. Perhaps, the fact that the
start node of all games has the same card positions tilled
may influence the assignment of the winning neuron.
Moreover, the initial configuration also represents the least
organized, where this is identified by one neuron performing
an averaging function.

I I

Complex or longer solutions, Figure 3, have many
feedback and internal loops. The loops are generally in the
early part of the solution. Once the solution approaches the
winning goal the trace becomes less complex. This suggests
that neurons may be overworked. Any technique that would
spread the organization of attributes more evenly over the
SOM would likely improve performance.

VI. CONCLUSION
Performance of neural network architectures is evaluated

against a set of a priori selected knowledge based heuristics
on a 32-card version of the FreeCell game. Particular
emphasis is given to the evaluation and identification of
appropriate neural architecture. A combination of SOM and
single hidden layer multiplayer perceptron is found to
provide competitive performance with the knowledge based
heuristics. Trace analysis of the SOM once trained indicates
that the SOM clearly partitions the problem into different
stages of play. Moreover, the SOM. may well benefit from
the ability to encode tempora1,relationships in an attempt to
provide additional context to the current spatial encoding of
the input space.

In short, we believe that the FreeCell game provides a
good benchmarking environment for a wide range of
learning algorithms, providing both a concise definition and
interesting spatial and temporal learning problems.

REFERENCES
[I] History of FreeCell, htfp://www.solitaire-

freecell.co~istory_otfreecell.htm.

http:l/www.sotihiregames.camifreecell.html
121 Solitaire Games Week - FreeCell,

131 FC Pro, http:lmome.earthlink.nev-fomalhauvfcpro.ht~l.
[4] Xcell, http://www.gamesdomain.com/directdl2154hl
151 FreecellTwl - Program Detail - WindowsPC.c&n,

http:l/www.windowspc.com/games_miac/F~~~~ellT~l.htm
[6] Windows 95/98 Games,

http://www.bookcase.co~library/softwar~wi~9x.~~m~s.html
[7] Chellapilla K and Fogel DB (1999) "Evolution, Neural Networks,

Games, and Intelligence," Roc. BEE, Vol. 87:9, Sept., pp. 1471.1496,
[8] Russell, Stuart J. and Norvig, Peter, Artificial Intelligence A Modern

Approaclr. New Jersey: Prentice Hall.
[9] J.F. Kolen, A.K. Gwl. "Learning in Parallel Distributed Processing

Networks: Computational Complexity an lnfomtion Content," EEE
Transactions on Systems, Man, and Cybernetics. 21(2), pp 359-366,
March/ April 1991.

[IOIT. Kohonen, Self-Organizing Maps, 3" Ed., Springer-Verlag, ISBN 3-
w - m z i -9 ~nnn

[IIlWidrow B., Lek M.A., "Adaptive Neural Networks and Their
Applications," lntemational Joumal of intelligent Systems," 8. pp 453-
507. 1993.

[IZIDemulh H.. Beak M., Matlab - Neural Network Toolbox, Users Guide
4 .0 hrtn:/lax~w.mathwurks.c~,i~~

Cl31 D.E. Rumelhart, J.L. McClelland, et al., Parallel Distributed Processing
- Explorations in the Microstructure of Cognition. Volume 1:
Foundations, MIT Prcrs, ISBN 0-262-68053-X. 1986. .

[14lR. Fletcher, Practical Methods of Optimization. 2" Edition. John Wiley
and Sons, ISBN 0-471-91547-5, 1987.

Fig. 3. SOM#2 on Nodes Closed for a 'Difficult' Game.

2293

http:l/www.sotihiregames.camifreecell.html
http://www.gamesdomain.com/directdl2154hl

