
Game Solvers 1
Akihiro Kishimoto and Martin Mueller

Contents

Introduction . 4

Terminology and Definitions on AND/OR Tree and Minimax Tree . 5

Algorithms for Game Solvers . 8

The αβ Algorithm . 9

Proof-Number Search Variants . 10

Basic Proof-Number Search . 10

Depth-First Proof-Number Search . 12

Reduction of Memory Requirement . 14

PNS Variants in Directed Acyclic and Cyclic Graphs . 15

Endgame Databases . 16

Other Approaches . 17

Threat-Based Approaches . 17

Early Win/Loss Detection . 18

Monte Carlo Tree Search Solver . 18

Probability Propagation . 18

Results Accomplished on Solving Games . 19

Conclusions . 19

Recommended Reading . 19

A. Kishimoto (*)

IBM Research, Ireland Research Lab, Dublin, Ireland

e-mail: akihirok@ie.ibm.com

M. Mueller

University of Alberta, Edmonton, AB, Canada

e-mail: mmueller@ualberta.ca

Springer Science+Business Media Singapore 2017

R. Nakatsu et al. (eds.), Handbook of Digital Games and Entertainment Technologies,
DOI 10.1007/978-981-4560-50-4_35

3

mailto:akihirok@ie.ibm.com
mailto:mmueller@ualberta.ca

Abstract

Games have simple, fixed rules as well as clear results such as win, draw, or loss.

However, developing algorithms for solving games has been a difficult chal-

lenge in Artificial Intelligence, because of the combinatorial complexity that the

algorithms must tackle.

This chapter presents an overview of successful approaches and results

accomplished thus far on game solving. Conducting tree search is a standard

way to solve games and game positions. Remarkable progress has been made in

developing efficient search algorithms over the last few decades. The chapter

describes several standard techniques including αβ search, proof-number search,

and endgame databases.

Keywords

AND/OR tree • Search • αβ algorithm • Proof-number search • df-pn • Endgame

databases

Introduction

Researchers have invested significant resources on research in two-player zero-sum
games with perfect information. Many popular board games such as chess,

checkers, and Go fall into this category, and these games have been used as test

beds for testing algorithms in artificial intelligence (AI) research. In this type of

zero-sum game, the two players’ goals are strictly opposite: when one player wins,

the opponent loses. Perfect information means that all information is available

to both players. Game positions are typically represented by a board state and

the turn to play. Depending on the game, extra information such as the history of the

moves played so far may be needed to play and score the result according to the

rules.

In a two-player zero-sum game with perfect information, if both players con-

tinue playing optimal moves from a position, the final outcome for that position,

called the game-theoretic value or value, is either a win for the first player (i.e., a

loss for the second player), or a loss for the first player (i.e., a win for the second

player), or a draw (if allowed by the rules of the game). Any finite game can be

solved in principle since the value of the starting position can be determined by

following optimal moves of both players.

Allis (1994) defines three levels of solving a game:

1. Ultra-weakly solved. The game-theoretic value of the start position has been

determined.

2. Weakly solved. A strategy from the start position has been determined to obtain

the game-theoretic value of the start position under reasonable computing

resources.

3. Strongly solved. The game-theoretic value and a strategy have been determined

for all legal positions under reasonable computing resources.

4 A. Kishimoto and M. Mueller

There are often significant differences among these three levels in terms of

difficulties of achieving the levels of solving. For example, the game of n � n
Hex can be proven to be a win for the first player (Nash 1952). However, winning

strategy is only known for n �10 (Pawlewicz and Hayward 2014).

For weakly or strongly solving games, the availability of computing resources is

restricted to only reasonable ones. In principle, as remarked in Allis (1994), given a

large enough amount of time, CPU, and memory resources, games such as chess or

Go could be weakly or strongly solved by performing αβ search or retrograde

analysis described later in this chapter. In practice, many games are far too large for

a brute force approach, and therefore the development of game solvers that work

efficiently under the available resources has been an ongoing challenge.

This chapter gives an overview of the most popular computational approaches

for finding strategies for game positions of interest, that is, for at least weakly

solving them. Search algorithms are the core of these approaches. In practice, high-

performance game solvers combine game-independent search algorithms with

game-specific knowledge. While both game-independent and game-specific

approaches are necessary to significantly improve the performance of the solvers,

the chapter mainly deals with game-independent search algorithms due to their

applicability to many games and even to other domains.

Terminology and Definitions on AND/OR Tree and Minimax Tree

Assume that a player p tries to prove a win for a position where p is to play. Then,

pmust prove that at least one of the legal moves leads to a win. However, if it is the

opponent’s turn to play, p must be able to win against all the opponent’s moves.

This check can be performed recursively, leading to the concept of an AND/OR tree

search. The definitions and terminology for AND/OR tree search introduced in this

section follow (Kishimoto et al. 2012).

An AND/OR tree is a rooted, finite tree consisting of two types of nodes: OR and

AND nodes. OR nodes correspond to positions where the first player is to play and

AND nodes to positions where the second player moves next. A directed edge

representing a legal move is drawn from node n to node m if that move played at

position n leads to position m.
All nodes except the root node have a parent. In this chapter, players are

assumed to move alternately. Therefore, each child of an OR node is an AND

node, and each child of an AND node is an OR node. In addition, the root is

assumed to be an OR node with no loss of generality, but it can be an AND node as

well in practice.

Each node in an AND/OR tree has three possible types of values: win, loss, or
unknown. As in Kishimoto et al. (2012), the phrase “a node is x” is short for “a node
has value x.” A node of value win/loss indicates that its corresponding position is a

sure win/loss for the first player, respectively. For the sake of simplicity, the value

of draw is defined to be the value of loss if possible game outcomes are not

explicitly defined. Several techniques for dealing with draws are surveyed in

1 Game Solvers 5

Kishimoto et al. (2012). A node of value unknown indicates that the game-theoretic

value of its corresponding position has not yet been proven. To determine its game-

theoretic value, such a node must be examined further. Expanding a node is the

procedure of generating all children of the node, which represent legal moves, and

connecting the node to these children by directed edges.

A node with no children is called a terminal node. A terminal node is either a win

or a loss, as determined by the rules of the game. An internal node is a node that has
at least one child. A leaf node is an unexpanded node with unknown value. A leaf

node must be expanded to determine whether it is internal or terminal.

AND/OR tree search aims to solve an AND/OR tree, i.e., determine whether the

root is a win or a loss. The value of an internal node is calculated from the values of

its children. If at least one child of an internal OR node n is a win, then n is also a

win. At position n, the first player can play a move that leads to that child and win

against the second player. If all children of n are losses, n is a loss since all the legal
moves of the first player at position n lead to losing positions. Otherwise, n is

unknown. Similarly, an internal AND node n is a loss if at least one of its children is
a loss, a win if all its children are wins, and unknown otherwise.

A node that is a win is also called a proven node, while a node that has been

determined to be a loss is a disproven node. A proof is a computed win, while a

disproof is a computed loss.

When a node is computed to be a win, a subtree of an AND/OR tree contains a

winning strategy for the first player. Such a subtree is called a proof tree and

guarantees that node is a win. A proof tree T with root node r is constructed as

follows:

1. T contains r.
2. For each internal OR node of T, T contains at least one child.

3. For each internal AND node of T, T contains all children.

4. All terminal nodes in T are wins.

A disproof tree, which contains a winning strategy for the second player, is

defined in an analogous way, by swapping AND and OR in the definition above, and

requiring all terminal nodes to be losses.

Figure 1 illustrates an example of an AND/OR tree. OR nodes are shown by

squares and AND nodes are shown by circles. Values win, loss, and unknown are

shown by W, L, and U, respectively. Nodes D, F, H, and K are terminal nodes and

nodes G, J, and L are leaf nodes. The other nodes are internal nodes for which

values are calculated by propagating back the values of the leaf and terminal nodes.

For example, node C is a loss because node F is a loss. Irrespective of the value of

G, the second player can win against the first player by selecting a move that leads

to F. Node I is unknown because node K is a win and node L is unknown. The

second player still has a chance to win against the first player by examining L. By
following this back-propagation procedure, the value of the root node A is deter-

mined to be a win. A proof tree of A is shown with bold lines. Note that for weakly

solving the root, AND/OR tree search can ignore nodes that are not part of the

6 A. Kishimoto and M. Mueller

constructed proof tree. For example, in Fig. 1, there is no need to examine the nodes

that are not along the bold lines. A high-performance AND/OR tree search algo-

rithm focuses on finding a proof tree as quickly as possible. Assume the standard

search space for trees with depth d and branching factor (the number of legal moves

at each internal node) b. Also, assume there is only one proof tree in this search

space and all terminal nodes are located at depth d. In the worst case, search

examines all bd terminal nodes to find a proof. In contrast, the proof tree contains

only b
d
2

j k
terminal nodes.

There may be many proof trees, but finding one is sufficient to solve the root.

In many games, more than one sequence of moves lead to the same position

(e.g., Hex and Othello) and a move sequence may lead to a repeated position (e.g.,

chess and checkers). In other words, the search space of such games can be

represented by a directed acyclic graph (DAG) or a directed cyclic graph (DCG).

The notion of AND/OR trees, proof, and disproof trees can be generalized for such

graphs.

Minimax trees are a generalization of AND/OR trees. Instead of Boolean values,

numerical scores are assigned to leaf and terminal nodes. An OR node in such a

minimax tree is called a Max node, and an AND node is called a Min node. The
scores are assigned by calling an evaluation function that approximates the chance

of the first player winning. A larger score indicates that a position is more favorable

for the first player. As in AND/OR trees, the score at each internal node of a

minimax tree is calculated from the leaf nodes in a bottom-up manner. At an

Fig. 1 Example of

AND/OR tree

1 Game Solvers 7

internal Max node, the first player aims to maximize its advantage by taking the

maximum score of all children of that node. At an internal Min node, the second

player aims to minimize the advantage of the first player by calculating the

minimum score of the children.

Figure 2 illustrates an example of a minimax tree where Max and Min nodes are

represented by squares and circles, respectively, and evaluation scores are written

inside the squares and circles. The score of the root node A becomes 50 by

propagating back the scores of leaf nodes D, E, F, and G.
The solution tree which contains a strategy in the minimax framework is defined

in a similar way to the proof tree. For details, see e.g., (de Bruin et al. 1994).

Algorithms for Game Solvers

This section describes general approaches to solve games or game positions.

Forward search explores a tree from the root until it reaches terminal nodes.

Depth-first search (DFS) and best-first search (BFS) are standard search methods

commonly used in many applications including game solvers. While DFS requires

only a small amount of memory, it suffers from a combinatorial explosion of its

time complexity when the search space is large. In contrast, while BFS tends to

explore much smaller search space than DFS, BFS suffers from a combinatorial

explosion of its space complexity caused by storing the explored search space in

memory. However, game research has revealed that the issue on BFS large memory

requirement can be resolved by preserving only important portions of the search

Fig. 2 Example of minimax tree

8 A. Kishimoto and M. Mueller

space. In addition, BFS can often be enhanced further by incorporating ideas

behind DFS.

Backward search is the other approach to search for a solution and deals with the
scenario where all terminal nodes can be enumerated with the available computing

resources. Backward search starts with terminal nodes and determines the values of

positions toward the root. It can be combined with forward search (e.g., Gasser

1996; Schaeffer et al. 2007). The following sections introduce standard forward and

backward search algorithms that can be used for game solvers.

The ab Algorithm

The αβ algorithm (Knuth and Moore 1975) is a depth-first forward search algorithm

commonly used in many two-player game-playing programs. αβ is used to deter-

mine the next move to play but can be applied to solve games, for example, by

assigning a score of1 to terminal positions that are wins for the first player,�1 to

terminal positions that are not wins, and other heuristic values to undecided

positions. Basic αβ examines a minimax tree in a depth-first manner with a fixed

depth d to compute the best score of the root node. If d is set deep enough, αβ
returns the winner at the root by returning the score of either 1 or -1.

αβ preserves a lower bound α and a upper bound β on the score of a minimax

tree. During performing search, the scores of α and β are updated and used for

pruning subtrees that are irrelevant for calculating the score at the root. By

incorporating good move ordering such as (Schaeffer 1989), αβ can reduce the

search space to examine by increasing the frequency of pruning subtrees. This

enables αβ to search much deeper and contributes to significantly improving the

performance of αβ-based game solvers.

Many variants and enhancements to αβ have been developed over decades (see

the literature review such as (Marsland 1986). Iterative deepening (ID) (Slate and
Atkin 1977) is a standard enhancement to αβ. ID carries out a series of shallower

depth-first search before performing direct search to depth d. That is, ID first

performs depth-first search from the root with d = 1. Then, if ID finds no solution,

it performs depth-first search again from the root with d = 2, then d = 3, 4, � � �,
and so on. This procedure is repeated until ID either finds a solution, proves that

there is no solution, or exhausts resources. Intuitively, because of extra overhead of

reexamining previously examined nodes, αβ combined with ID looks less efficient

than basic αβ that performs direct search to depth d. However, αβ with ID is

empirically more efficient, because previous search results can be used to improve

move ordering. As a result, the cost paid for shallower search becomes a small price

in order to significantly increase the chance of pruning subtrees for deeper search.

For example, the best move calculated in previous shallower search has a high

probability that is also the best in deeper search. Examining this move first therefore

reduces a large amount of work.

ID is enhanced further by using a transposition table (TT) (Greenblatt

et al. 1967; Slate and Atkin 1977), a large cache which stores search results of

1 Game Solvers 9

previously examined nodes such as scores, flags indicating whether these scores are

exact, lower bounds or upper bounds, search depths, best moves for shallower

search, etc. The transposition table is usually constructed as a hash table and takes

an advantage of the fact that the search space of many games are a graph where

more than one path can lead to the same node, a so-called transposition. The
transposition table prevents ID from examining the subtree again by merely retriev-

ing and returning a score saved in the TT, when ID encounters a transposition and

verifies that the cached score can be reused. In addition, even if the cached score

does not result in eliminating the examination of subtrees, such as the case where a

cached node has not been explored deep enough, the best move information in the

TT can be used to improve move ordering of αβ, significantly reducing search

effort.

Proof-Number Search Variants

An essential drawback of αβ is that search is limited by fixed depth that causes the

minimax tree to grow exponentially with the search depth. The drawback can be

alleviated by introducing enhancements such as fractional depth and search exten-

sions (e.g., Campbell et al. 2002; Tsuruoka et al. 2002). However, because they cure

the problem of exponential tree growth only partially, αβ-based solvers are still

unable to solve positions that require deep search. For example, it is difficult to

adjust αβ to solve positions that depend on narrow but deep lines of play, as occur in

Go-Moku and checkmating puzzles in chess-like games (Kishimoto et al. 2012).

This section describes proof-number search variants that address this problem.

Basic Proof-Number Search

Proof-Number Search (PNS) (Allis et al. 1994) is a best-first forward search

algorithm. PNS calculates the proof and disproof numbers that estimate the diffi-

culty of solving nodes. Based on the proof and disproof numbers, PNS aims to

examine nodes in simplest-first order. As long as a node is considered to be easy

because of a low proof or disproof number, PNS keeps exploring its subtree without

any bound on the search depth. This characteristic enables PNS to find narrow but

deep proofs or disproofs efficiently.

Formally, the proof number of a node is defined as the minimum number of leaf

nodes in its subtree that must be proven to prove that the node is a win, while the

disproof number is the minimum number of such leaf nodes that must be disproven

to prove that the node is a loss. The smaller the proof/disproof number is, the easier

PNS assumes that it is to prove that a node is a win/loss.

Let n be a node with children n1,� � �,nk. One proven child suffices to prove a win
at an OR node, while all children must be proven to show a win at an AND node

10 A. Kishimoto and M. Mueller

(and vice versa for disproof). The proof number pn(n) and the disproof number dn

(n) of node n are therefore calculated as follows:

1. For a proven terminal node n, pn(n) = 0 and dn(n) = 1.

2. For a disproven terminal node n, pn(n) = 1 and dn(n) = 0.

3. For an unknown leaf node n, pn(n) = dn(n) = 1.

4. For an internal OR node n that has children c1, � � �, ck,
pn(n) = min(pn(c1), � � �, pn(ck)), dn(n) = dn(c1) + � � � + dn(ck).

5. For an internal AND node n that has children c1, � � �,ck,
pn(n) = pn(c1) + � � � + pn(ck), dn(n) = min(dn(c1) + � � � + dn(ck)).

Figure 3 shows an example. The proof and disproof numbers of a node are shown

inside that node. The proof number is shown above the disproof number. In this

Figure, node I is a terminal node, a loss. Nodes D, F, G, H, J, and K are leaf nodes

with proof and disproof numbers initialized to 1. The proof and disproof

Fig. 3 Example of proof and disproof numbers

1 Game Solvers 11

numbers of internal nodes are calculated by the rule described above. For example,

pn(E) = min(pn(I), pn(J), pn(K)) = min(1, 1, 1) = 1 and dn(E) = dn(I) + dn

(J) + dn(K) = 0 + 1 + 1 = 2.

PNS maintains a proof and a disproof number for each node. In the beginning,

the AND/OR tree of PNS consists only of the root node and its proof/disproof

numbers are initialized to 1. Then, until either the value of the root is determined, or

resources are exhausted, PNS repeats the following four steps:

1. Starting from the root, one path in the tree is traversed until PNS finds a leaf node

called a most-promising node (MPN) (aka most-proving node). To find a MPN,

PNS selects an AND child with the smallest proof number among all children at

internal OR nodes, and an OR child with the smallest disproof number at internal

AND nodes. Ties are broken arbitrarily. In practice, game dependent knowledge

can sometimes be used here.

2. The MPN is expanded by generating all its children and adding new edges from

the MPN to them. The MPN becomes an internal node and the children are new

leaf nodes.

3. If the MPN turns out to be a terminal node, the proof and disproof numbers of the

MPN are set according to the rules of the game. Otherwise, the proof and

disproof numbers of the new leaf nodes are initialized to 1.

4. The proof and disproof numbers of the affected nodes are recomputed along the

path from the MPN back to the root.

Figure 4 illustrates an example of the procedure of PNS. Starting from the root

node A, PNS traverses path A ! B ! D and finds MPN D. Then, PNS expands

D and generates three children of which proof and disproof numbers are initialized

to 1. Next, it updates the proof and disproof numbers of D, B, and then A.

Depth-First Proof-Number Search

One inefficiency of basic PNS is that it always propagates back updated proof and

disproof numbers from a MPN to the root even if the child with the smallest (dis)

proof number remains the same. For example, assume that a MPN is located

100 levels down in the tree from the root. To expand only one leaf node (i.e.,

MPN), basic PNS must traverse back and forth 100 nodes along the path from the

root to the MPN. The depth-first proof-number (df-pn) search algorithm (Nagai

2002) reduces the frequency of reexamining internal nodes. If the search space is a

tree, Nagai proves that df-pn is equivalent to PNS in the sense that both algorithms

can always select a MPN. This section briefly describes the idea behind df-pn. See

(Kishimoto et al. 2012) as well as (Nagai 2002) for precise, detailed descriptions.

The node selection scheme of df-pn is still identical to PNS, which makes df-pn

explore the search space in a best-first manner. However, df-pn uses two thresholds

to explore the search space in a depth-first manner as well: one for the proof number

and the other for the disproof number. If both proof and disproof numbers of a node

12 A. Kishimoto and M. Mueller

n are smaller than the thresholds of proof and disproof numbers, respectively, df-pn

continues examining n’s subtree without backtracking to n’s parent.
Let thpn(n) and thdn(n) be the thresholds of the proof and disproof numbers at

node n, respectively. For example, in Fig. 5, the root OR node A has three children

B, C, andDwhere pn(B) = 4, pn(C) = 8 and pn(D) = 10. B remains on a path to a

MPN until pn(B) exceeds pn(C) = 8, the second smallest proof number among all

children. Therefore, the proof number threshold for B, thpn(B) = 9, and search can

stay in this subtree without updating exact proof numbers until the threshold is

reached. When pn(B) � 9 = pn(C) + 1, the MPN switches to a node below C in

the tree.

Thresholds of the disproof number at AND nodes are handled analogously with a

disproof threshold. Df-pn can remain in the subtree of the child c1 with smallest

disproof number as long as dn(c1) is better than the disproof number of the second

best child. For example, in Fig. 5, df-pn sets thdn(E) = dn(F) + 1 = 4 + 1 = 5 to

be able to switch as soon as the disproof number of F becomes strictly smaller

than E.
Thresholds for proof numbers of children at AND nodes and disproof numbers

of children at OR nodes are set as illustrated below for AND node B in Fig. 5.

Assume that thpn(B) = 9, and B has two children E and F with pn(E) = 3 and

pn(F) = 1. E is selected for expansion since dn(E) < dn(F), and search

can stay in its subtree until pn(E) + pn(F) reaches the threshold for the parent,

Fig. 4 Example of PNS procedure

1 Game Solvers 13

thpn(B) = 9. Therefore, for searching E, its threshold thpn(E) is set to

thpn(B) – pn(F) = 9–1 = 8.

Reduction of Memory Requirement

The baseline PNS and df-pn algorithms store all nodes that they expand in main

memory. For difficult problems, they quickly run out of space. More practical

algorithms use a fixed-size transposition table (TT) with a replacement strategy

(Breuker 1998; Seo et al. 2001; Nagai 2002). This solves the memory problem but

adds overhead from re-expanding nodes that have been overwritten in the table.

The SmallTreeGC algorithm (Nagai 1999) is an effective replacement strategy

used in many high-performance solvers (Nagai 2002; Kishimoto and M€uller 2005;
Kishimoto 2010; Kaneko 2010). The TT entry for each node stores the size of the

subtree rooted at that node. SmallTreeGC assumes that a small subtree can be

reconstructed easily with a small amount of effort even if that subtree is not

available in the TT. When the TT becomes full, SmallTreeGC discards a fixed

fraction R of the TT entries, starting with those of smallest subtree size. The value

of R is determined empirically.

According to Kishimoto et al. (2012), Pawlewicz uses the multiple-probe replace-

ment strategy of Beal and Smith (1996) in their Hex df-pn implementation. Their

multiple-probing TT replacement strategy implementation is popular with αβ chess

Fig. 5 Illustration of df-pn behavior

14 A. Kishimoto and M. Mueller

programs such as Fruit and Stockfish. The technique probes four consecutive entries in

a single hash table, and overwrites a TT entrywith smallest subtree size among the four.

PN2 and its variants are another approach which reduces the memory require-

ment of PNS (Allis 1994; Breuker 1998; Winands et al. 2004). The main idea is to

use two levels of PNS. The first level, PN1, stores a tree starting from the root node.

At a leaf node of PN1, PN
2 invokes the second level of PNS, PN2, with limited

number of nodes expanded and a separate memory allocation. After PN2 completes

search, this PN2 tree is discarded and only the proof and disproof numbers of the

root, corresponding to a PN1 leaf node, are passed back to PN1.

A hybrid approach was used to solve the game of checkers (Schaeffer

et al. 2007). As in PN2, a disk-based first-level search called the front-end manager
was based on PNS. It invoked a memory-only second level search called the back-
end prover. This back-end used df-pn with a TT and SmallTreeGC.

PNS Variants in Directed Acyclic and Cyclic Graphs

There are three problems to address when PNS and df-pn searches in DAG or DCG.

The overestimation problem results from double-counting proof and disproof

numbers of nodes in a DAG that can be reached along multiple paths (Allis

et al. 1994). The Graph-History Interaction (GHI) problem (Palay 1983; Campbell

1985), which can occur both in αβ and PNS variants, originates from incorrect

handling of cycles in DCG. The infinite loop problem (Kishimoto and M€uller 2003;
2008) refers to the phenomenon that df-pn may loop forever without expanding any

new nodes in DCG. Current solutions to these problems are summarized in

Kishimoto et al. (2012).

Search Enhancements
Although PNS variants are already powerful without domain knowledge, high-

performance game solvers incorporate many search enhancements to be able to

solve difficult game positions. This section describes some of the well-known

methods. See Kishimoto et al. (2012) for comprehensive survey.

The proof and disproof numbers of the leaf node are always set to 1 in their

original definition. However, in practice, some leaf nodes are easier to (dis)prove

than others. With heuristic initialization, leaf nodes are heuristically initialized with
proof and disproof numbers (Allis 1994). One example for this is using the number

of legal moves at a leaf node, which can be calculated with little overhead in some

games (Allis et al. 1994). Another popular approach is using domain-specific

heuristic functions (Nagai 2002). One important remark is that the thresholds of

df-pn must be increased to reduce the overhead of internal node re-expansions when

heuristic initialization is combined with df-pn, as in df-pn+ (Nagai 2002; Kishimoto

and M€uller 2005).
If more than one promising sibling exist and the search space does not fit into the

TT, df-pn sometimes suffers from thrashing the TT by fast switches between

subtrees. The 1 + e trick (Pawlewicz and Lew 2007) increases the threshold when

1 Game Solvers 15

df-pn selects the best child. This enables df-pn to stay longer in the subtree of one

child, without frequently switching to other promising siblings.

Given a proven node n, tree simulation (Kawano 1996) performs a quick proof

check for an unknown node m that looks similar to n. The similarity of positions is

usually defined in a game-specific way. Unlike normal search such as df-pn that

generates all legal moves, simulation is restricted to generate moves borrowed from

n’s proof tree at each OR node and checks if a proof tree of m can be constructed in

a similar way to n’s proof tree. If simulation succeeds, m is proven as well.

Otherwise, m’s value remains unknown and normal search is performed. Consid-

ering that any search must examine all nodes inm’s proof tree even in an ideal case,
simulation makes almost the smallest effort in proving m, therefore, requires much

less effort than normal search.

Schaeffer et al. (2007)’s PNS-based solver estimates the game-theoretic value of

a node with high confidence by using scores from their αβ-search-based game-

playing program. Let s be such a score of node n, and th be a threshold for an

iterative PNS algorithm. If s � th, n is regarded as a terminal node with value likely
win. Similarly, if s � �th, n is considered to be a likely loss. As in iterative

deepening, the algorithm starts with a small value of th and gradually increases th
after constructing each heuristic proof tree. When the root is solved with th = 1, a

true proof tree is constructed, where all leaf nodes are true values, and the proof is

complete.

Endgame Databases

In many converging games (Allis 1994) such as chess and checkers, the number of

pieces on the board decreases as the game progresses. This indicates that it is often

feasible to enumerate all endgame positions that occur close to the end of the game.

In this case, the game-theoretic values of these endgame positions can be

precomputed and saved as endgame databases that map a position to its

corresponding game-theoretic value. If the endgame databases contain the game-

theoretic values of all the legal positions for a game, that game is strongly solved.

As an example, the database for the game of Awari calculated by Romein and Bal

(2003) contains the exact scores of all legal Awari positions.

Retrograde analysis (Bellman 1965; Thompson 1986) is a standard backward

search algorithm to systematically construct endgame databases, starting from

terminal nodes and progressing toward the root. Retrograde analysis has been

successfully used in many domains (Lake et al. 1994; Schaeffer et al. 2003; Romein

and Bal 2003). Additionally, endgame databases contribute to significantly improv-

ing the ability of game solvers that employ forward search (Schaeffer et al. 2007),

because forward search can obtain the game-theoretic value of a node without

deeper search.

Assume that the game-theoretic value of a game is either a win, a loss, or a draw,

and a repeated position is defined to be a draw by the rule of that game. Then, one

way to implement retrograde analysis is summarized as follows:

16 A. Kishimoto and M. Mueller

1. Let S be a set containing all positions, that may include unreachable ones from

the root.

2. Initialize: assign the game-theoretic value determined by the rules of the game to

all terminal nodes and a value of unknown to all other positions.

3. For each node n � S with value unknown, check if n’s value can be determined

from its children. For example, OR node n is a win if n has at least one child in

S that is a win.

4. Repeat step 3 until the number of nodes with value unknown no longer

decreases.

5. Mark the nodes of value unknown as draws since these nodes are either

unreachable from the root, or no win or loss can be forced by either player.

When constructing a database for a difficult game in practice, retrograde analysis

requires large CPU and storage resources. Implementations typically use parallel

machines as well as large amounts of both main memory and hard disk space. There

are several approaches that achieve efficient parallelism and reduce disk I/O. For

example, as in paging of the operating system, retrograde analysis determines

which part of the databases should be preserved in the main memory to alleviate

the overhead of disk I/O (Lake et al. 1994; Romein and Bal 2003). Schaeffer

et al. (2003) not only compress databases space-efficiently but also decompress

the databases in real-time so that forward search can use them both time- and

memory-efficiently. Techniques to reduce the main memory requirement at the cost

of a small computational overhead are presented in Lincke (2002); Romein and Bal

(2003).

To initiate parallelism, Romein and Bal (2003) present an asynchronous

distributed-memory parallel algorithm that overlaps database computation and

processor communication via network. In contrast, Lake et al. (1994) split the

search space into a set of small slices that can be solved easily and independently.

The correctness of databases must be verified, since both software and hardware

errors including disk and network errors may occur during a large-scale computa-

tion (Schaeffer et al. 2003; Romein and Bal 2003).

Other Approaches

This section briefly describes other approaches related to forward search.

Threat-Based Approaches

Threats are moves to which a player must reply directly to win, or to avoid an

immediate loss. If threats exist in a position, threat-space search (Allis 1994; Allis

et al. 1996) considers only threats and safely ignores other legal moves. Threat-

space search can significantly reduce the search space to explore, because the

number of threats is usually much smaller than that of the legal moves. The idea

1 Game Solvers 17

behind threat-space search is used in solvers such as Henderson et al. (2009) and

Kishimoto and M€uller (2005).
Different levels of threat sequences, which are a generalization of direct threats,

can be detected by using pass moves. Intuitively, moves are limited by using the

information on how many moves a player needs to make in a row so that that player

has a forced win. Examples of such methods are λ-search (Thomsen 2000) and

generalized threats search (Cazenave 2002). These techniques can be applied to

both αβ and df-pn (Nagai 2002; Yoshizoe et al. 2007).

Early Win/Loss Detection

Game-specific features can sometimes be used to statically detect whether a

player is winning or losing. Such static win/loss detection can significantly

reduce the size of a proof tree, as well as the search space explored by forward

search. Examples include virtual connections in the game of Hex (Anshelevich

2002; Henderson et al. 2009) and the detection of eye space and potential

eye space in the life and death problem in Go (Wolf 1994; Kishimoto and

M€uller 2005).
Detecting a dominance relationship between positions can also contribute

to recognizing wins or losses early. An important example is the checkmating

problem in shogi (Japanese chess) (Seo 1999). For example, assume that forward

search proves that node n is a win and then encounters unproven node m that

dominates n. Then, m is also a win because the first player can copy the winning

strategy from n.

Monte Carlo Tree Search Solver

Monte Carlo Tree Search (MCTS) is a forward search algorithm that has achieved

remarkable success in playing the game of Go and many other games where

accurate evaluation functions are difficult to develop (see the chapter on computer

Go, written by Yoshizoe and M€uller). MCTS combines tree search with Monte

Carlo simulation that is used to evaluate a leaf node. In addition to Monte Carlo

simulation results, if game-theoretic values of wins or losses are available, the

MCTS-Solver propagates back these values (Winands et al. 2008). This modifica-

tion enables MCTS-Solver to solve positions.

Probability Propagation

Instead of using proof and disproof numbers as the criteria to explore an AND/OR

tree, probability propagation (PP) performs best-first forward search based on a

probability of a first player win for each node in an AND/OR tree (Pearl 1984; Stern

et al. 2007). Enhancements similar to the ones for PNS can be incorporated into PP,

18 A. Kishimoto and M. Mueller

including heuristic initialization (Stern et al. 2007), transposition tables, and

two-level search (Saffidine and Cazenave 2013).

Results Accomplished on Solving Games

The techniques described thus far contributed to solving many nontrivial, popular

games that people actually play, such as Awari (Romein and Bal 2003), checkers

(Schaeffer et al. 2007), Connect-Four (see http://tromp.github.io/c4/c4.html and

(Allis 1988), and Go-Moku (Allis et al. 1996).

Researchers use games with smaller boards as a research test bed to

develop new algorithms. Examples of games solved in this way are 5 � 5 Go (van

der Werf et al. 2003), 6 � 6 Othello (see http://www.tothello.com/), 10 � 10 Hex

(Pawlewicz and Hayward 2014), and 5 � 6 Amazons (Song and M€uller 2014).
In chess, endgame databases are constructed for most positions with 3–7 pieces

(see http://chessok.com/?page_id=27966). Puzzle or endgame solvers based on

PNS variants have been developed to achieve state-of-the-art performance in

many games, such as chess (Breuker 1998), checkers (Schaeffer et al. 2007), Hex

(Arneson et al. 2011), life and death in Go (Kishimoto and Muller 2005), and

tsume-shogi (Seo et al. 2001; Nagai 2002; Kishimoto 2010). In particular, research

on tsume-shogi has achieved remarkable success by testing with many difficult

tsume-shogi problems created by human experts. State-of-the-art solvers based on

df-pn can solve all the existing hard problems with solution sequences longer than

300 steps, including Microcosmos with 1525 steps.

Sophisticated game solvers combine many of the techniques discussed. For

example, the checkers solver of Schaeffer et al. (2007) incorporates PNS, df-pn,

αβ, endgame databases, and many other game-independent and game-specific

enhancements.

Conclusions

This chapter presented an overview of the techniques for weakly or strongly solving

games or game positions. Game positions can be solved by forward search, back-

ward search, or a combination. As standard algorithms to perform forward search,

the chapter introduced αβ and PNS variants. Backward search for building endgame

databases uses retrograde analysis. Additionally, the chapter gave an overview of

other approaches including threat-space search, MCTS and PP, followed by a

summary of the results accomplished thus far on solving games.

Recommended Reading

L.V. Allis, A Knowledge-Based Approach of Connect Four: The Game is Over, White to Move
Wins. Master’s thesis, Vrije Universiteit Amsterdam, Amsterdam, 1988. Report No. IR-163

1 Game Solvers 19

http://tromp.github.io/
http://www.tothello.com/
http://chessok.com/?page_id=27966

L.V. Allis, Searching for Solutions in Games and Artificial Intelligence. PhD thesis, University of

Limburg, Maastricht, 1994

L.V. Allis, M. van der Meulen, H.J. van den Herik, Proof-number search. Artif. Intell. 66(1),
91–124 (1994)

L.V. Allis, M.P.H. Huntjes, H.J. van den Herik, Go-moku solved by new search techniques.

Comput. Intell. 12(1), 7–23 (1996)

V. Anshelevich, A hierarchical approach to computer Hex. Artif. Intell. 134(1–2), 101–120 (2002)
B. Arneson, R.B. Hayward, P. Henderson, Solving Hex: beyond humans, in Computers and Games

2010, ed. by H.J. van den Herik, H. Iida, A. Plaat. Lecture Notes in Computer Science (LNCS),

vol. 6515 (Springer, Berlin, 2011), pp. 1–10

D. Beal, M.C. Smith, Multiple probes of transposition tables. ICCA J. 19(4), 227–233 (1996)

R. Bellman, On the application of dynamic programming to the determination of optimal play in

chess and checkers. Proc. Natl. Acad. Sci. U. S. A. 53, 244247 (1965)

D.M. Breuker, Memory Versus Search in Games. PhD thesis, Universiteit Maastricht, Maastricht,

1998

M. Campbell, The graph-history interaction: on ignoring position history, in Proceedings of the
1985 ACM Annual Conference on the Range of Computing: Mid-80’s Perspective, (ACM,

New York, 1985). pp. 278–280

M. Campbell, A.J. Hoane Jr., F. Hsu, Deep Blue. Artif. Intell. 134(1–2), 57–83 (2002)

T. Cazenave, A generalized threats search algorithm, in Computers and Games 2002, ed. by
J. Schaeffer, M. M€uller, Y. Björnsson. Lecture Notes in Computer Science (LNCS) (Springer,

Heidelberg, 2002), pp. 75–87

A. de Bruin, W. Pijls, A. Plaat, Solution trees as a basis for game tree search. ICCA J. 17(4),
207–219 (1994)

R. Gasser, Solving Nine Men’s Morris, in Games of No Chance, ed. by R.J. Nowakowski. MSRI

Publications, vol. 29 (Cambridge University Press, Cambridge, 1996), pp. 101–113

R. Greenblatt, D. Eastlake, S. Croker, The Greenblatt chess program, in Proceedings of the Fall
Joint Computer Conference, 1967, pp. 801–810. Reprinted (1988) in Computer Chess Com-
pendium, ed. by D.N.L. Levy (Batsford, London), pp. 56–66

P. Henderson, B. Arneson, R.B. Hayward, Solving 8 � 8 Hex, in Proceedings of the 21st
International Joint Conference on Artificial Intelligence (IJCAI’09), ed. by C. Boutilier

(AAAI Press, Pasadena, 2009), pp. 505–510

T. Kaneko, Parallel depth first proof number search, in Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, (AAAI’10), ed. by M. Fox, D. Poole (AAAI Press, Menlo

Park, 2010), pp. 95–100

Y. Kawano, Using similar positions to search game trees, in Games of No Chance, ed. by
R.J. Nowakowski. MSRI Publications, vol. 29 (Cambridge University Press, Cambridge,

1996), pp. 193–202

A. Kishimoto, Dealing with infinite loops, underestimation, and overestimation of depth-first

proof-number search, in Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence, (AAAI’10), ed. by M. Fox, D. Poole (AAAI Press, 2010)

A. Kishimoto, M. M€uller, About the completeness of depth-first proof-number search,

in Computers and Games 2008, ed. by H.J. van den Herik, X. Xu, Z. Ma,

M.H.M. Winands. Lecture Notes in Computer Science, vol. 5131 (Springer, Heidelberg,

2008), pp. 146–156

A. Kishimoto, M. M€uller, Df-pn in Go: an application to the one-eye problem, in Advances in
Computer Games 10 (ACG’03): Many Games, Many Challenges, ed. by H.J. van den Herik,

H. Iida, E.A. Heinz (Kluwer, Boston, 2003), pp. 125–141

A. Kishimoto, M. M€uller, Search versus knowledge for solving life and death problems in Go, in

Proceedings of the 20th National Conference on Artificial Intelligence (AAAI’05), ed. by
M.M. Veloso, S. Kambhampati (AAAI Press/MIT Press, Menlo Park, 2005), pp. 1374–1379

A. Kishimoto, M.Winands, M. M€uller, J.-T. Saito, Game-tree search using proof numbers: the first

twenty years. ICGA J. 35(3), 131–156 (2012)

20 A. Kishimoto and M. Mueller

D.E. Knuth, R.W. Moore, An analysis of alpha-beta pruning. Artif. Intell. 6(4), 293–326 (1975)

R. Lake, J. Schaeffer, P. Lu, Solving large retrograde analysis problems using a network of

workstations. Advances in Computer Games 7, 135–162 (1994)

T. Lincke, Exploring the Computational Limits of Large Exhaustive Search Problems. PhD thesis,

ETH Z€urich, 2002
T. Marsland, A review of game-tree pruning. ICCA J. 9(1), 3–19 (1986)

A. Nagai, A new depth-first-search algorithm for AND/OR trees. Master’s thesis, The University

of Tokyo, Tokyo, 1999

A. Nagai, Df-pn Algorithm for Searching AND/OR trees and its Applications. PhD thesis, The

University of Tokyo, 2002

J. Nash, Some games and machines for playing them. Technical Report D-1164, Rand Corp., 1952
A.J. Palay, Searching with Probabilities. PhD thesis, Carnagie Mellon University, 1983

J. Pawlewicz, R. Hayward, Scalable parallel depth first proof number search, in Computers and
Games (CG 2013), vol. 8427. Lecture Notes in Computer Science (Springer, 2014),

pp. 138–150

J. Pawlewicz, L. Lew, Improving depth-first pn-search: 1+ε trick, in Proceedings of the 5th
Computers and Games Conference (CG’06), ed. by H.J. van den Herik, P. Ciancarini,

H.H.L.M. Donkers. Lecture Notes in Computer Science, vol. 4630 (Springer, Heidelberg,

2007), pp. 160–170

J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving (Addison-

Wesley, Reading, 1984)

J.W. Romein, H. Bal, Solving the game of Awari using parallel retrograde analysis. IEEE Comput.

36(10), 26–33 (2003)

A. Saffidine, T. Cazenave, Developments on product propagation. in Computer Games 2013, vol.
8427. Lecture Notes in Computer Science, 2013, pp. 100–109

J. Schaeffer, The history heuristic and alpha-beta search enhancements in practice. IEEE Trans.

Pattern Anal. Mach. Intell. 11(1), 1203–1212 (1989)

J. Schaeffer, Y. Björnsson, N. Burch, R. Lake, P. Lu, S. Sutphen, Building the checkers 10-piece

endgame databases, in Advances in Computer Games 10: Many Games, ed. by H.J. van den

Herik, H. Iida, E.A. Heinz. (Kluwer, Boston, 2003), pp. 193–210

J. Schaeffer, N. Burch, Y. Björnsson, A. Kishimoto, M. M€uller, R. Lake, P. Lu, S. Sutphen,
Checkers is solved. Science 317(5844), 1518–1522 (2007)

M. Seo, On effective utilization of dominance relations in tsume-shogi solving algorithms, in

Proceedings of the 8th Game Programming Workshop, 1999, pp. 137–144 (in Japanese)

M. Seo, H. Iida, J.W.H.M. Uiterwijk, The PN*-search algorithm: Application to tsume shogi. Artif.

Intell. 129(1–2), 253–277 (2001)

D.J. Slate, L.R. Atkin, Chapter 4. Chess 4.5 – Northwestern University chess program, in Chess
Skill in Man and Machine, ed. by P.W. Frey (Springer, New York, 1977), pp. 82–118

J. Song, M. M€uller, An enhanced solver for the game of Amazons, 2014, in Accepted for IEEE
Transactions on Computational Intelligence and AI in Games (TCIAIG), 12 pp

D. Stern, R. Herbrich, T. Graepel, Learning to solve game trees, in Proceedings of the 24th
International Conference of Machine Learning (ICML), 2007, pp. 839–846

K. Thompson, Retrograde analysis of certain endgames. ICCA J. 9(3), 131–139 (1986)

T. Thomsen, Lambda-search in game trees – with application to Go. ICGA J. 23(4), 203–217
(2000)

Y. Tsuruoka, D. Yokoyama, T. Chikayama, Game-tree search algorithm based on realization

probability. ICGA J. 25(3), 132–144 (2002)

E.C.D. van der Werf, H.J. van den Herik, J.W.H.M. Uiterwijk, Solving Go on small boards. ICGA

J. 26(2), 92–107 (2003)

M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van den Herik, An effective two-level proof-number

search algorithm. Theor. Comput. Sci 313(3), 511–525 (2004)

M.H.M. Winands, Y. Björnsson, J.-T. Saito, Monte-Carlo tree search solver, in Proceedings of the
6th Computers and Games Conference (CG’08), ed. by H.J. van den Herik, X. Xu, Z. Ma,

1 Game Solvers 21

M.H.M. Winands. Lecture Notes in Computer Science, vol. 5131 (Springer, Berlin, 2008),

pp. 25–36

T. Wolf, The program GoTools and its computer-generated tsume Go database, in 1st Game
Programming Workshop in Japan (Hakone), 1994

K. Yoshizoe, A. Kishimoto, M. M€uller, Lambda depth-first proof number search and its applica-

tion to Go, in Proceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI-07), ed. by M.M. Veloso (2007), Morgan Kaafmann, San Francisco, pp. 2404–2409

22 A. Kishimoto and M. Mueller

	1 Game Solvers
	Introduction
	Terminology and Definitions on AND/OR Tree and Minimax Tree
	Algorithms for Game Solvers
	The αbeta Algorithm
	Proof-Number Search Variants
	Basic Proof-Number Search
	Depth-First Proof-Number Search
	Reduction of Memory Requirement
	PNS Variants in Directed Acyclic and Cyclic Graphs
	Search Enhancements

	Endgame Databases
	Other Approaches
	Threat-Based Approaches
	Early Win/Loss Detection
	Monte Carlo Tree Search Solver
	Probability Propagation

	Results Accomplished on Solving Games
	Conclusions
	Recommended Reading

