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Abstract 

Allis, L.V., M. van der Meulen and H.J. van den Herik, Proof-number search, Artificial 
Intelligence 66 (1994) 91-124. 

Proof-number search (pn-search) is designed for finding the game-theoretical value in game 
trees. It is based on ideas derived from conspiracy-number search and its variants, such as 
applied cn-search and afl-cn search. While in cn-search the purpose is to continue searching 
until it is unlikely that the minimax value of the root will change, pn-search aims at proving 
the true value of the root. Therefore, pn-search does not consider interim minimax values. 

Pn-search selects the next node to be expanded using two criteria: the potential range of 
subtree values and the number of nodes which must conspire to prove or disprove that range 
of potential values. These two criteria enable pn-search to treat efficiently game trees with a 
non-uniform branching factor. 

It is shown that in non-uniform trees pn-search outperforms other types of search, such as 
a-/3 iterative-deepening search, even when enhanced with transposition tables, move 
ordering for the full principal variation, etc. Pn-search has been used to establish the 
game-theoretical values of Connect-Four, Qubic, and Go-Moku. There pn-search was able 
to find a forced win for the player to move first. The experiments described here are in the 
domain of Awari, a game which has not yet been solved. The experiments are repeatable 
for other games with a non-uniform branching factor. 

This article describes the underlying principles of pn-search, presents an appropriate 
implementation, and provides an analysis of its strengths and weaknesses. 

1. Background 

The idea of guiding a search process with the help of conspirators originated 
in the middle of the 1980s (McAllester [27]). Many researchers were prompted 
to implement this idea after McAllester's publication [28]. Although the idea 
was well founded and several attempts were made by various researchers [6, 
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15, 19, 20, 25, 32, 33, 39], the results were not encouraging. Persistent research 
has shown that at least in several domains of game playing the ideas of 
conspiracy-number search, which has matured into proof-number search, are 
productive. An advantage of conspiracy-number search is that it pays attention 
to non-uniform trees. With the help of proof-number search we now demon- 
strate that, in some cases, non-uniform trees are less intractable than assumed 
so far. 

1.1. Conspiracy-number search 

McAllester [28] and Schaeffer [32, 33] both focused on search trees to be 
expanded at a slow pace via their most-promising nodes. Thus, terminal nodes 
were changed into internal nodes. We briefly explain the idea. Before the 
expansion of a node J, a heuristic value v~ has been assigned to J. After the 
expansion, J's new value v 2 is obtained from the heuristic values of its children. 
The values u 1 and v 2 may be equal, but they may also differ. In many games, 
heuristic evaluation functions (with their enhancements such as quiescence 
search) achieve a rather reliable correlation between the values v~ and v 2. In 
most cases, the expansion of a single terminal node therefore does not have a 
large impact on the values of its ancestors, In practice, we often see that only 
the value of J's immediate one or two ancestors are affected. To change the 
value of the root several terminal nodes must change their value. We may 
define the minimum number of terminal nodes which must change their value 
in order to change the value of the root as a measure of likeliness for the root 
to have its value changed by further expansions. 

Conspiracy-number search (cn-search) is based on the definition given 
above. The algorithm selects a terminal node from a minimal set of terminal 
nodes which must change their value in order to change the value of the root. 
It expands the node and, traversing backwards, it updates the tree. As soon as 
the number of terminal nodes which must change their value in order to change 
the root's value exceeds a given upper bound, the search is terminated. The 
upper bound is chosen such that it is rendered unlikely that the root value will 
change by further expansions. 

1.2. Some implementations 

Schaeffer's straightforward implementation [32, 33] showed that good results 
were achievable in tactical chess positions, but not in positional positions due 
to the refined range of possible values. This handicap has extensively been 
examined by van der Meulen [39]. He concentrated on a different type of tree 
by attempting to establish the minimax value of a game tree, in which internal 
nodes were only expanded, never evaluated (disregarding the implicit evalua- 
tion by using iterative deepening). Van der Meulen coined his algorithm 
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applied cn-search, since it searches iteratively to a fixed depth using the ideas of 
conspiracy-number search, whereas McAUester's original algorithm [28] 
searched to an unrestricted depth. 

Van der Meulen's algorithm was said to be fit for tournament chess-playing 
programs. Unfortunately, the results were not so good [17]. As a sequel to van 
der Meulen's ideas Allis et al. [6] intensified the approach of establishing the 
minimax value of a full game tree. They were not interested in changing the 
root's value but in proving its value. This resulted in the introduction of ~/3 
conspiracy-number search which has turned out to be successful when solving 
the game of Connect-Four [2,37]. In [6], it is shown that a/3-cn search 
outperforms unordered a-fl search on non-uniform trees, while afl-cn search 
performs worse than unordered a-/3 search on uniform trees. 

Elkan's application of cn-search to and/or  trees [15] can also be seen as a 
predecessor of two-valued pn-search. His implementation has proof numbers 
(although named differently) but no disproof numbers (cf. Section 3). As a 
consequence, his selection at or-nodes is equivalent to ours, but at and-nodes 
his selection mechanism is inferior. 

1.3. Multi-valued trees 

In the domain of Connect-Four, a/3-cn search has been applied on two- 
valued trees (a win for White, not a win for White) [2, 37]. By experiments in 
other domains with multi-valued trees, we have come across cases where a/3-cn 
search now and then lingers in apparently bad variations. Closer investigations 
showed that it was caused by the attempt to disprove the root value by as wide 
a margin as possible instead of disproving it as quickly as possible. This issue is 
discussed more extensively in Section 2.2. In the current article, a/3-cn search 
will be improved to the extent that it is also applicable to multi-valued trees. 
The solution is to treat multi-valued trees as if they were two-valued (see 
Section 2). Apart from solving this problem, the algorithm presented has been 
given elegance and clarity. Since proving and disproving is the central theme of 
the algorithm, the name proof-number search (pn-search) has been adopted. 

In this contribution, we use the game of Awari as testing ground. Awari is a 
two-person zero-sum game with perfect information. Its decision complexity is 
indeterminate and its search complexity is estimated at 1012 [3]. Hence, the 
game is a sincere challenge for the application of new searching methods. From 
1989 onwards it has been played annually at the Computer Olympiads 
[23, 24, 38]. We note that there are three more reasons supporting the choice of 
Awari. First, a series of endgame databases guarantees for a part of the game a 
perfect terminal-node evaluation function [8]. Second, the number of moves 
ranging from 1 to 6 in combination with the rules of the game ascertains the 
occurrence of trees with non-uniform branching factors. Third, our Awari 
program Lithidion (containing a combination of a-/3 search, pn-search and 
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endgame databases) has won the gold medal at the Awari competition of the 
second, third, and fourth Computer Olympiads [7, 40]. This ensures that our 
or-/3 search implementation is a strong comparison measure for pn-search (see 
Sections 6 and 7). 

1.4. Contents 

The course of this article is as follows. Section 2 describes the concept of 
most-proving node and introduces the idea of proof-number search informally. 
In Section 3, we define proof numbers and disproof numbers, and provide a full 
description of the proof-number search algorithm in pseudo-code. In Section 4, 
two techniques which reduce the size of the tree to be kept in memory during 
the search are presented, together with two techniques which slightly reduce 
the execution time. Section 5 describes applications for pn-search, ranging 
from solving games to tournament play. Section 6 contains a brief description 
of Awari and a short introduction to two other algorithms: a-/3 iterative- 
deepening search with move ordering for the full principal variation, with and 
without transposition tables. In Section 7 the performances of the three 
algorithms are compared. A generalization of the test results is given in Section 
8. Section 9 contains the conclusions. 

2. An introduction to proof-number search 

The minimax algorithm introduced by von Neumann [41], and widely 
disseminated by von Neumann and Morgenstern [42], was the first algorithm to 
be able to determine the minimax value of game trees. It visits each and every 
node in the tree. More sophisticated algorithms, such as a-/3 search [21] and 
SSS* [12, 36] achieve the same result, while pruning many nodes which can 
never influence the final outcome. Whereas a-/3 search is a depth-first search 
algorithm, SSS* traverses the tree in a best-first manner. In two-valued trees 
SSS* and a-/3 search visit the same set of nodes, while in multi-valued trees 
SSS* will never visit a node pruned by a-/3 search and often prunes more [36]. 

In this section we face the main question of any best-first search algorithm: 
which node to expand next? Although Russell and Wefald [31] have shown that 
there exists a definite answer, it is not easy to compute. Therefore, each 
best-first algorithm has a central theme which guides the selection. For SSS*, 
upper bounds on subtrees are of paramount importance, while node counts 
play the main role in all variants of cn-search. In B*, [10] evaluation functions 
produce reliable upper and lower bounds, which are used in turn to select the 
next node to be expanded. This idea has been elaborated upon by Palay [29] 
who provided a set of rules for making decisions throughout the B* algorithm. 
In cn-search the number of conspirators which may change the minimax value 
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is the decisive criterion for the selection of a node. Since pn-search aims at 
proving the true value of the root it does not consider interim minimax values. 
Pn-search uses two criteria for the selection of a node: (i) the potential range 
of subtree values, and (ii) the number of nodes which must conspire to prove 
or disprove the range of potential values. For two-valued trees, the use of node 
counts as a selection criterion leads to the search algorithm of Section 2.1. In 
multi-valued trees, however, some dilemmas occur, as described in Section 2.2. 
Anticipating the conclusions from that section, we mention that a/3-cn search 
approaches these dilemmas suboptimal. In pn-search we have resolved this 
problem by performing several two-valued searches instead of one multi-valued 

search. It leads to better results. The risk of lingering in bad variations, while 

simple solutions may be at hand, has been eliminated. 

2.1. The most-proving node 

In this section we discuss the selection criteria which efficiently guide the 
search to the final goal of proving the root 's true minimax value in a 
two-valued game tree. Throughout  the article we assume that all game trees 
have a max node as the root. Moreover,  if two or more children of a node 
cannot be distinguished by the search process, the leftmost child will be 
evaluated first. To achieve our aim, we define the most-proving node of a 
search tree as the node which potentially contributes most to the establishment 
of the minimax value of the root with the least possible effort. The terminal 
nodes of all trees examined in this section have values 0 or 1. 

We start showing how node counts are related to the concept of most- 
proving node. Then at each max node we focus at a child through which the 
value 1 is expected to be achievable with the least possible effort. Finally, we 
repeat  the latter procedure by selecting for each min node a child through 
which the value 0 is expected to be achievable with the least possible effort. 

Throughout  the analysis, we assume that all temporary terminal nodes of the 
tree have the same expected solution time. Furthermore,  we assume that the 
solution times of all nodes are independent.  Finally, we assume that in each 
node the probability of proof outcome 0 is equal to the probability of proof 
outcome 1. All three assumptions can be relaxed when domain-dependent 
information is available, possibly leading to different initializations of the proof 
and disproof numbers, thereby improving the efficiency. Related analyses can 
be found in [16, 31, 34]. In this article we assume that no domain-dependent 
information is available. 

In Fig. 1, both nodes b and c may still reach the value 1. SSS* will therefore 
continue the search within the leftmost subtree, resulting in the evaluation of 
node e. However ,  in our opinion, it is worthwhile first to calculate the 
probabilities of pruning one or more nodes. If the nodes e and f both evaluate 
to value 1, node h can be pruned, while both e and f can be pruned, if h 
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1 ? ? 1 ? 

Fig. 1. A 2-ply tree in which h is the most-proving node. 

evaluates to 1. In other words, either two nodes must conspire to prune one, or 
the evaluation of one node may result into pruning two. For the tree of Fig. 1, 
node h is therefore the most-proving node to be selected by the pn-search 
algorithm. In Fig. 1 this is indicated by the bold path. At this point, we would 
like to remark that node h might turn out to be the wrong choice. If node h has 
value 0, and the nodes e and f both have value 1, pn-search does not prune any 
node, whereas SSS* prunes h. If, however, the values of the nodes e, f, and h 
have the same probability distribution, then on average pn-search will search 
less nodes than SSS*. This observation is the key issue necessary to conclude 
that pn-search outperforms SSS*, although occasionally SSS* may do better. It 
also indicates that node counts are a useful criterion for selecting the most- 
proving node as defined above. 

In the two-valued tree of Fig. 2, all terminal nodes have an as yet unknown 
value. Starting at root a, we must select the most-proving node. There are two 
possible outcomes for the root. First, let us assume that the root will have the 
value 0. This can only be the case if both nodes b and c are proven to have the 
value 0. To complete such a proof, nodes in both trees must be evaluated. 
There is no preference for the order of visiting. Second, let us assume that the 
root will have the value 1. This can be shown by proving just one of its children 
to have value 1. Selecting the child which proves this value with the least 

? ? ? ? ? 

Fig. 2. A 3-ply tree in which l is the most-proving node. 
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possible effort may reduce the total number of evaluations considerably. In 
general, at max nodes the only selection criterion is the amount of effort 
needed to prove value 1. In the tree of Fig. 2, only two nodes need to conspire 
to prove 1 as value of b (viz. one of i, j, and k, and one of l and m), while three 
nodes must conspire to prove 1 as value of c (viz. f, g, and h). Thus, the 
most-proving node lies within subtree b. 

Node b is a min node. Proving value 1 therefore requires a proof of value 1 

for both d and e. This does not indicate any preference. Moreover,  we know 
that proving value 0 requires only a proof in one of them. The selection of a 
child should therefore be based solely on the amount of effort required to 
prove 0 as value. In subtree d, it takes three nodes to prove the value 0 (i, j, 
and k), while in subtree e only two nodes need to evaluate to 0 (l and m). 
Therefore ,  the most-proving node lies within subtree e. In general, at min 
nodes the only selection criterion is the amount of effort needed to prove the 
value 0. 

At  node e, no distinction can be made between nodes l and m, resulting in 
the selection of the leftmost child l (the bold lines in Fig. 2). 

We conclude that selecting the most-proving node in a two-valued tree can 
be performed in a straightforward manner using node counts. 

2.2. Dilemmas in multi-valued trees 

As announced at the beginning of this section, the selection of the most- 
proving node in multi-valued trees may lead to dilemmas. Figure 3 presents an 
example tree in which such a dilemma exists. 

We assume all terminal nodes in Fig. 3 to have integer values between 0 and 
3, both inclusive. Node b has a value between 0 and 3, node c between 0 and 2 
for node c cannot obtain the value 3. Thus, independent of the value of node g, 
one or more evaluations must take place within subtree b, either to prove or 
disprove 3 as root value. A choice must be made between the evaluation of 

0 ? ? 1 ? 

Fig. 3. A 3-ply tree with a dilemma. 
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node i within subtree d, and node 1 within subtree e. To prove 3 as value of 
node b, both subtrees d and e must attain the value 3. At 4east l and i, and 
maybe j must then be evaluated. On this basis no preference can be given to 
either i or I. To  disprove 3 as value, a difference exists between subtrees d and 

e, which becomes apparent  when considering the possible values of node g. 
First, let us assume that the value of node g equals 0, resulting in a value of 0 

for subtree c. It will then be essential to evaluate at least node i (and possibly j )  
to see whether  more than 0 can be obtained within subtree b. If nodes i and j 

do not yield more than 0, evaluating l becomes useless. In that case, node i 
should be preferred to I as the next node to evaluate. 

Second, suppose that the value of node g equals 2, resulting in the same 
value for subtree c. In that case evaluation of node l to 2 or less is sufficient to 
disprove b as best child of a, while in subtree d both i and j must evaluate to 2 
or less to achieve the same feat. This time l should be chosen as next node to 
evaluate. 

Hence,  depending on the as yet unknown value of g, different choices are to 
be made. The seemingly obvious alternative of first evaluating g and then 
deciding whether  to choose i or l, is not optimal. In more complicated cases, g 
will actually be a subtree consisting of many nodes. This means that evaluation 
has to be read as expansion, and then determining g's value may take a long 
time, whereas the whole subtree c can be pruned if either i or j, and l have a 
value of 2 or more. 

The advantage of first evaluating i and then j is that there is a probability 
that the upper  bound of subtree b will drop as far as the value 0, while first 
evaluating l can only achieve a decrease in upper bound to value 1. The 
advantage of first evaluating l is that disproving the upper bound may be 
achieved after evaluating only one node,  instead of two. In general, the choice 
is between selecting a node which may disprove the current upper bound of its 
parent  by as wide a margin as possible, and selecting a node which may as 
quickly as possible disprove the current upper bound. 

Let  us suppose that, as has been done in a/3-cn search [6], we choose to 
disprove the upper bound of the root by as wide a margin as possible, and 
therefore  prefer  subtree d instead of subtree e. If in the nodes i and j actually 
two subtrees originate consisting of many nodes, then the expansions (and 
evaluations) within subtree d will continue either until an upper bound within 
the subtree is established of less than or equal to 2 (in which case subtree c 
becomes a bet ter  choice), or until the lower bound of subtree d is raised to at 
least 1. In the unfortunate,  but quite possible, event that subtree d grows to a 
large tree before one of these conditions is met,  we may end up spending all 
our  search efforts within it, without achieving any result. This is contrary to the 
idea of conspiracy-number search, which dictates that subtrees should only be 
fur ther  expanded if the same result cannot be obtained in another  part of the 
tree with less effort. Since the evaluation of both g and I to the value 1 suffices 
to prove that a has a value of 1, the idea is clearly violated. 
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Experiments with implementations of o~-cn search on Awari have shown 
that the risk of choosing an unfortunate subtree is real. Although most trees 
are traversed quickly without ill effects, in some cases the algorithm stumbles 
into such a subtree. The node-count criterion for either proving the upper 
bound or disproving it with as wide a margin as possible continues to be valid 
without any solution in the offing. The fact that this actually happened 
prompted  us to the improvement described below. 

Let  us examine what can happen in the other case, if we decide to prefer 
disproving the upper bound of the root as quickly as possible. First node l will 
be visited. If it expands to a large tree in which more than two nodes must 
conspire to disprove upper bounds greater than 2, preference is automatically 
shifted to subtree d. Then both trees will grow more or less simultaneously 
without the risk of missing a simple disproof in one of them. As soon as the 
upper  bound is established to be at most 2, node g becomes the most-proving 
node. The shortest proof occurs when l is evaluated first and has value 1, and 
thereafter  node g evaluates to the value 1. Subtree d will then be discarded. 

The implications of this choice are that during the search in any max node 
we should try to prove the current upper bound of the root with the least 
possible effort, and at any rain node we should try to disprove the current 
upper bound as quickly as possible, regardless of the new upper bound which 
may result of such a disproof. All values less than the given bound are 
therefore equivalent for the duration of the search, as are all values greater 
than or equal to the given bound we try to (dis)prove. The multi-valued search 
has effectively degenerated into a two-valued search. 

Consequently,  each multi-valued search is to be split up into a number of 
two-valued searches performed one after the other. In the next subsection, we 
explain the selection criteria of pn-search considering two-valued trees only. 

2.3. An informal description of pn-search 

Above we have seen that the most-proving node should be selected based on 
both trying to prove a root value v at every max node and trying to disprove it 
at every rain node. This process attempts to make clear if a value is reachable 
or not. For  two-valued trees, e.g., with the values 0 and 1, we may select the 
value 1 and try to prove or disprove it. If the algorithm proves it, the value of 
the tree has been established. A disproof of 1 is equivalent to a proof of the 
value 0. For multi-valued trees, e.g., with integer values ranging from 0 to 10, 
matters are more complicated. We could start (dis)proving the value 10, and 
then decreasing this value every time a proof fails. After at most ten searches, 
we will have established the exact root value. A better alternative is to make 
use of binary search, which will yield the root value within four searches. 
However ,  stepwise decreasing the search value can be useful, viz. for establish- 
ing a bound on the root value. If such a procedure is combined with increasing 
the search value starting from 1, it may be possible to prove quickly that the 
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root value lies within the range of 4 to 6, while the exact value (4, 5, or 6) 
takes a long time to determine. The binary-search method would immediately 
start with the hard part, and if resources for finishing the search are not 
available, no information on the root value is gained. In our Awari experi- 
ments we have used binary search in all cases. 

As a case in point we present the following example. Assume, we may wish 
to decide whether a given position is good or bad for one of the players. 
Suppose the game has as possible outcomes the integer values between -48  
and +48 both inclusive (as has Awari). The game is won by South (the player 
who moves first) for all positive root values, while North wins if the root value 
is negative. Root value 0 indicates a draw. If South wants to know whether a 
given position can be won, he may try to prove or disprove the value 1. During 
the search, the values -48  to 0 are therefore treated as equivalent, as are the 
values between 1 and 48. In general, while (dis)proving a value v, all values 
greater than or equal to v are equivalent, and referred to as v. All values less 
than v are also equivalent and referred to as -7 v. 

Given a value v, the algorithm starts from a tree consisting of a single node. 
At  each step the most-proving node is selected and expanded. In order to 
make the selection of the most-proving node straightforward, at each node J a 
proof number and a disproof number is stored (these will be defined formally 
in Section 3). A proof number indicates the minimum number of nodes within 
the subtree which must conspire in order to prove v as value of J, while a 
disproof number indicates the minimum number of nodes for disproving v as 
value of J. As soon as the proof number of the root equals 0, the search is 
terminated; the disproof number then will equal infinity. Conversely, if the 
disproof number equals 0, the proof number will equal infinity. In Section 3, 
we will elaborate on the formal parts of the pn-search algorithm. 

3. Proof numbers and proof-number search 

Above we have informally introduced (dis)proof numbers and proof-number 
search. To establish the exact minimax value of the root, we have described a 
two-valued proof-number search algorithm to be invoked several times for 
different values. During each run the most-proving node of a tree is repeatedly 
selected and expanded whereupon the (dis)proof numbers in the tree are 
updated. 

We remark that in the examples of Section 2, trees with some unevaluated 
terminal nodes were presented. In the formal description of the algorithm, 
however, we have chosen to inspect all newly created children immediately 
after the expansion of a node. Those children, which are terminal to the full 
game tree, are assigned a value. This value can be obtained from an evaluation 
function which defines the game-theoretical value of the position. An endgame 
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database can be used to define such an evaluation function. No values are 
assigned to temporary terminal nodes. Such a node will be expanded if and 

when it is selected as most-proving node. 
In this section we first formally define (dis)proof numbers. Then we give the 

full pn-search algorithm in pseudo-code. 

3.1. Proof numbers and disproof numbers 

As stated before,  all values greater than or equal to v are equivalent for the 
purpose of (dis)proving v, and are referred to as v, while all values less than v 
are referred to as --iv. Below we consider four types of nodes. 

First, we look at temporary terminal nodes. These nodes have an unknown 
value; for proving the value of such a node to be v, only the node itself must 

evaluate to v. Analogously, the node needs to evaluate to ~ v  to disprove v. 
Therefore  the proof number and the disproof number of a temporary terminal 

node are equal to 1. 
Second, we consider terminal nodes with a known value. If a terminal node J 

has been assigned a known value equivalent to v, then it has already been 
proven that v is its value. Its proof number will therefore equal 0, while its 
disproof number equals infinity. If J has a value equivalent to --iv, its proof 

number  equals infinity, while its disproof number is 0. 
Third, we concentrate on internal max nodes. We assume that the (dis)proof 

numbers of its children are all known and available. For a max node J the 
following holds: to prove value v, it is sufficient to have one child which proves 
value v. It is expected that proving this value with the least possible effort is 
proving it for the child with the smallest proof number. In other words, the 
proof  number of a max node is equal to the minimum of the proof numbers of 
its children. The only way to disprove v for a max node J is to disprove v for all 
its children. Therefore,  the disproof number of J is equal to the sum of the 
disproof numbers of all its children. 

Finally, we look at internal min nodes. Here  we reason analogously as for 
internal max nodes, with minimum and sum exchanged. This means: the proof 

number  of a min node is equal to the sum of the proof numbers of its children 
and the disproof number of a min node is equal to the minimum of the disproof 
numbers of its children. The formal definition of (dis)proof numbers is 
presented in pseudo-code in Fig. 4. We continue with an example of its 
application. 

In Fig. 5 the tree of Fig. 3 is repeated with proof numbers and disproof 
numbers for the value 3. They are listed within the nodes. First the proof  
number  is shown, then the disproof number. The nodes h, k, and f are 
terminals with a known value. All three disprove 3 as value, since each of them 
has a value less than 3. The proof numbers thus equal infinity, while the 
disproof numbers equal 0. The nodes i, ], l, and g are terminals with as yet 
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if is a terminalnode(J) then 

if evaluation_value_known then 

if value(J) >i v then 

proof(J) := 0 
disproof(J):= 

else 

else 

proof(J) := 

disproof(J):= 0 
endif 

proof(J)'= 1 
disproof(J) :=  1 

enflif 
elseif is an internal_node(J)then 

if max_node(J) then 

proof(J) := min proof(j) 
j@childs(J) 

disproof(J) :=  ~ disproof(j) 
jEchilds(J) 

else 

proof(J) := ~] proof(j) 
jEchilds(J) 

disproof(J) : = min disproof(j) 
j Echilds(J) 

endif  
endif  

Fig. 4. The definition of (dis)proof numbers. 

2 ? 

0 ? ? 1 ? 

Fig. 5. A tree with (dis)proof numbers for the value 3. 
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unknown values. Both the proof numbers and the disproof numbers therefore 
equal 1. The nodes d and e are internal max nodes (as is node a). Hence,  
proving the value 3 in node d or e can be done by one of their children, 
whereas the conspiration of all children must disprove it. The proof numbers 
are the minima of their children's proof numbers, resulting in 1 for both d and 
e, while the disproof numbers are the sum of the disproof numbers of their 
children, resulting in 2 for d, and 1 for e. The nodes b and c are internal min 
nodes. The proof numbers are obtained by summing the proof numbers of 
their children, resulting in 2 for node b and infinity for node c. Their disproof 
numbers are equal to the minima of the disproof numbers of their children, 
giving 1 for b and 0 for c. From the proof and disproof numbers of node c it 

can be seen that it has already been disproven that 3 will be its value. Finally, 
node a, like the nodes d and e, minimizes the proof numbers and sums the 
disproof numbers. 

3.2. Selecting the most-proving node 

In this section we formulate how the most-proving node is selected using 
(dis)proof numbers. We first demonstrate the selection procedure for the value 
3 on the tree of Fig. 5, then a general selection criterion for finding the 
most-proving node in an arbitrary tree is formulated. Starting at the root node 
a it is checked which subtree is assumed to prove 3 as value of a with the least 
effort. In subtree b this only takes an effort of two nodes (the proof number of 
b), while in node c it takes an infinite effort as indicated by the proof  number 
of c. Therefore ,  subtree b is chosen as the most-proving subtree. At node b, 
the subtree is chosen in which disproving 3 as value of b is assumed to happen 
as quickly as possible (cf. the arguments in Section 2.2). 

Comparing the disproof numbers of the nodes d and e, we see that in subtree 
d disproving takes at least two nodes to be expanded, while in subtree e one 
expansion may suffice. Thus, subtree e is selected as most-proving subtree. At 
node e, which is a max node,  the proof numbers of its children are checked. 
The proof  number of node k (infinity) indicates that it is impossible to prove 3 
as value through k, while only one expansion might be needed through I. Thus 
node l is selected as most-proving node. The selection procedure terminates 
here: node l, a temporary terminal node, will be expanded. 

From this example the following observations can be made. At a max node a 
subtree is selected with a proof number equal to that of its parent,  and at a min 
node a subtree is selected with a disproof number equal to that of its parent. 
To these observations we add that if two or more children have a (dis)proof 
number  equal to that of their parent the leflmost child is selected. We are now 
able to formulate the selection criterion for finding the most-proving child in a 
methodically precise way. At  a max node, select the leftmost child with proof  
number  equal to that of its parent,  while at a min node select the leftmost child 
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with a disproof number equal to that of its parent. An advantage of this new 
formulation is that, on average, only half of the children have to be checked 
before selecting one. At the cost of a small amount of bookkeeping and by 
incrementally updating, one even can select the most-proving node immediate- 
ly (see Section 4.2). 

In Fig. 6, we present the algorithm for the selection of the most-proving 
node in pseudo-code. 

3.3. Updating the (dis)proof numbers 

After the most-proving node of the tree has been selected, it is expanded, 
and all its newly generated children are immediately inspected. If they are 
terminal to the full game tree they are evaluated and assigned a proof number 
and a disproof number, using the definition in Fig. 4. If they are temporary 
terminal nodes they are assigned a proof number and a disproof number only 
(cf. Fig. 4 again). The assignments of the proof and disproof numbers may 
affect the proof and disproof numbers of the most-proving node and of some or 
all of its ancestors. It is therefore important to update the (dis)proof numbers 
of the ancestors of the newly generated nodes. Figure 7 contains an algorithm 
in pseudo-code for this task. 

3.4. Two-valued pn-search 

Using the definitions, functions, and procedures defined in the previous 
subsections, we present in Fig. 8 the algorithm for two-valued pn-search. We 
assume that v is set to the higher value. This value does not occur in the 
while-loop of Fig. 8, since it is only used when determining the (dis)proof 
numbers of the terminal nodes (cf. the definition in Fig. 4). 

function select_most_proving_node(J) 
begin 

while is an internal_node(J) do 
if max_node(J) then 

J := leftmost_child_with_equalproof_number(J) 
else 

J := leftmost_child_with_equal_disproof_number(J) 
endif 

done 
return J 

end 

Fig. 6. Selection of the most-proving node. 
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procedure update_proof_numbers(J) 
begin 

while J ~ NIL do 

if max_node(J) then 

else 

end 

proof(J)'= min proof(j) 
jCchilds(J) 

disproof(J) : =  ~'~ disproof(j) 
jEchilds(J) 

proof(J) "= E proof(j) 
jcchilds(J) 

disproof(J) : =  rain disproof(j) 
jEchilds(J) 

endif 
J : =  parent(J) 

done 

Fig. 7. Updat ing the (dis)proof numbers after expansion. 

function two_valued__fin_search 
begin 

create_root(root) 
while proof(root) ~ 0 and disproof(root) ~ 0 do 

most_proving : =  select_most__proving_node(root) 
expand_node(most__proving) 
update_proof_numbers(most_proving) 

done 
if proof(root) = 0 t h e n  

return v 

else 
return ~ v 

endif  
end 

Fig. 8. Algori thm for proving or disproving v as value of the root. 



106 L.V. Allis et al. 

function m u l t i _ v a l u e d _ p n _ s e a r c h  

begin 
while lower  < upper  do 

v := in teger_grea ter_or_equal ( ( lower  + u p p e r ) / 2 )  

if t w o _ v a l u e d _ p n _ s e a r c h  = v then 
lower  : = v 

else 
upper  := v - 1 

endif 
done 
return upper  

end 

Fig. 9. Finding the minimax value of the root in a multi-valued domain. 

3.5. Mul t i -va lued  pn-search  

As mentioned in Section 2, there are two different methods to incorporate 
the two-valued pn-search algorithm into a multi-valued pn-search algorithm. 
The first method is examining the possible root values linearly, the second one 
uses a binary-search procedure. 

Even though the binary-search method has the advantage of determining the 
root value in less searches, the linear search still has some useful properties, 
especially in cases where narrowing the window of possible root values is 
preferred, e.g., in cases where it is impossible to prove an exact value within a 
given time limit. The choice between these two algorithms mainly depends on 
the structure of the domain under consideration and its constraints. In Fig. 9, 
we have presented an algorithm in pseudo-code for the binary-search method. 
This completes the implementation of our multi-valued pn-search. In the 
algorithm it is assumed that all possible terminal-node values are integers 
between lower  and upper.  

4. Reducing memory usage and execution time 

So far we have described a new search algorithm which may be able to find 
the game-theoretical value in game trees. Now the time is ripe to investigate 
whether the algorithm has some disadvantages and, if so, whether these could 
be lessened. 

A well-known disadvantage of all variants of cn-search is their requirement 
to keep the entire search tree in memory. As a result, only relatively small 
trees can be treated [28]. A second disadvantage is that cn-search variants 
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execute somewhat slower than, for instance, a-/3 search. This is due to the 
repeated traversals from the root to a terminal node and back again, as well as 
to the bookkeeping of the conspiracy numbers [32, 33]. In this section we 
consider ways in which these disadvantages can be reduced. Moreover, in the 
sections hereafter we show that in tournament programs for games, such as 
Awari, the advantages of pn-search already outweigh the disadvantages men- 
tioned here. 

4.1. Reducing memory usage 

A search tree must be kept in memory since any node already generated, but 
not yet expanded, may be selected as most-proving node at some future time; 
therefore the node must remain available. Of course, it is possible to delete 
subtrees and to regenerate them when needed, as for instance is done in IDA* 
[22]. However, this technique can have a severe impact on the execution time. 
Therefore, we will not consider any techniques removing nodes at one time 
and regenerating them later. Many researchers have faced analogous problems 
and have made suggestions for a solution (e.g., Ibaraki [18], Marsland et al. 
[26], Bhattacharyya and Bagchi [11], Chakrabarti et al. [13]). Using the 
characteristics of pn-search we present below two techniques which reduce the 
size of a generated search tree: the DeleteSolvedSubtrees technique and the 
DeleteLeastProving technique. 

The DeleteSolvedSubtrees technique involves removing all nodes in which the 
value v has been proven or disproven, i.e., all nodes with either proof number 
or disproof number equal to 0. During the update of the (dis)proof numbers of 
the ancestors of newly created nodes, all subtrees with a (dis)proof number 
equal to 0 can be removed. 

In Section 7, when comparing pn-search and two variants of a-C! iterative- 
deepening search, we have listed the total number of nodes visited and the 
maximum number of nodes to be stored in memory (see Table 1). From the 
results, it can be concluded that in searches which succeed in determining the 
value of the root, the size of the memory needed is between 2 and 4 times less 
than the size of the full tree. It shows that this simple technique is quite 
effective. In searches which fail to determine the root value, less subtrees exist 
in which v has been proven or disproven. The reduction technique is therefore 
less successful in those cases. 

The DeleteLeastProving technique should only be applied as a last resort 
when all memory has been used. Of course, one could decide to terminate the 
search but trying to postpone the end is also possible, e.g., by removing parts 
of the tree least likely needed in a continued search. We call these parts 
least-proving parts. To recognize them the concept of a least-proving node is to 
be defined. The least-proving node of a tree is the node to be selected last as 
most-proving node when using the node-count criterion (cf. Section 3.2). The 
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algorithm for selecting the least-proving node is presented in Fig. 10. 
The DeleteLeastProving technique has been realized as follows. As soon as 

the search process has run out of memory, one or more least-proving nodes are 
selected. At these nodes, both the proof number and disproof number are set 
to infinity, indicating that through these nodes nothing will be proved. Using 
the DeleteSolvedSubtrees technique, those nodes will be removed. Then the 
search continues until one of the following three cases occur: 

(1) The root value becomes proven or disproven. Then the search is 
terminated successfully. 

(2) Both the proof number and disproof number of the root equal infinity. 
Then the search is terminated unsuccessfully; it indicates that too many 
nodes have been deleted making a proof in the remaining tree im- 
possible. 

(3) The search process runs out of memory again, another set of least- 
proving nodes is selected and removed, and the search continues. 

4.2. Reducing execution time 

Pn-search's main extra cost in execution time with respect to, e.g., a-/3 
search is due to updating node counts and the selection of the most-proving 
node. In domains where move generation and position evaluation is fast, the 
overhead of pn-search per node may be substantial (up to 100% overhead), 
while in domains with slow move generation and/or position evaluation, the 
overhead is negligible. We remark, however, that the expected reduction in 
number of nodes grown by pn-search is a factor far larger than 2 (cf. Section 
6). The overhead per node is therefore of minor importance. 

function select_least_proving_node(J) 
begin 

while is an internal_node(J) do 
if max_node(J) then 

J := rightmost_child_with_maximum_proof_number(J) 
else 

J := rightmost_child_with_maximum_disproof_number(J) 
endif  

done 
return J 

end 

Fig. 10. Selection of the least-proving node. 
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Nevertheless, three small improvements can be made to the algorithms 
presented in Section 3. They may save some time. First, after the expansion of 
the most-proving node, normally not the node counts of all ancestors are 
affected. Let us suppose that Jk is the first affected ancestor on the path from 
root J0 to the most-proving node Jn. This implies that we may stop updating 
node counts, as soon as we have found that node Jk-1 is not affected. Second, 
as all node counts outside subtree Jk are unchanged, Jk will lie on the path to 
the next most-proving node. The selection algorithm may therefore start at Jk 
instead of at the root. Third, while updating the proof number and disproof 
number of a parent, one must always determine the minimum of the proof or 
disproof numbers of the children. At that time the most-proving node of the 
subtree may be stored at the parent, so that at the cost of a small amount of 
bookkeeping one can select the most-proving node of the whole tree instantly. 

In large trees, these three improvements may save quite a few node 
traversals. Although the total savings in execution time will be small, the 
straightforwardness of these improvements call for implementation. 

5. Applications of pn-search 

Game-tree search algorithms can be applied to positions in at least three 
categories: tournament play, post-mortem analysis (and also adjourned 
games), and game solving. In the course of the development of pn-search, we 
have applied it to instances of all three categories. 

Our Awari program Lithidion has first used pn-search in the 1991 Awari 
competition of the Third Computer Olympiad [38]. At the tournament, 
pn-search outperformed state-of-the-art a-fl search implementations in de- 
termining winning lines of play. A description of the results is presented in 
Section 7.3. 

Post-mortem analyses allow deeper searches than tournament play. For 
directional search algorithms, such as a-/3 search, only time constraints limit 
the search depth during a post-mortem analysis. Pn-search is also constrained 
by the size of available memory. However, our results show that the combina- 
tion of today's memory sizes and the reduction of nodes by pn-search with 
respect to a-/3 search make pn-search the better choice for post-mortem 
analysis on Awari (cf. Section 7). 

Solving Connect-Four, Qubic, and Go-Moku 

The ultimate post-morten analysis of a game considers the initial position. 
For three games we have performed this feat: Connect-Four [2, 37], Qubic [9], 
and Go-Moku [4]. Pn-search and one of its predecessor cn-search variants were 
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the main contributors to the completion of this research. In the first two cases, 
confirmation of the results obtained exist: Allen [1] showed independently of 
Allis et al. at almost the same time that White can win at Connect-Four. 
Patashnik [30] proved more than a decade before Allis and Schoo [9] the win 
for White in Qubic. Whereas Patashnik as a strong player selected all White's 
strategic moves himself, in our experiments pn-search did the move selection 
without any built-in strategic knowledge of the game. The solution of Go- 
Moku is very recent; a proper description is in preparation. 

For Connect-Four and Qubic we have developed a rather slow evaluation 
function (10 to 100 nodes per second) which either returns the game-theoret- 
ical value of a position or indicates that it cannot determine the correct value. 
The overhead of pn-search per node expansion is negligible compared to the 
node-evaluation time. Hence, the lesser number of nodes searched by pn- 
search in comparison with or-/3 search is a major asset. 

To anticipate slightly, we here conclude that pn-search already has proven its 
worth in several applications of game-tree search. Sections 6 and 7 will support 
this conclusion. 

6. Implementation details and performance measures 

Since our experiments have the purpose to determine whether pn-search is 
to be preferred to sophisticated implementations of a-/3 search on a practical 
domain, we must address several issues. Therefore we first describe our test 
domain, the game of Awari. Then we present the selected test positions. 
Thereafter we mark out the two a-/3 search implementations of which the 
results are compared with those of pn-search. Finally, we explain how we 
compare the performances of the three algorithms. 

6.1. Awari 

Awari is a two-person (South and North) zero-sum game with perfect 
information. It is one instance of a large family of games named Mancala, of 
which some 1200 variants are known. Another well-known game in this family 
is Kalah [35]. The Mancala games originate from Africa, and Awari is mainly 
played in its western countries, such as Nigeria. For the game described here, 
the names Wari or Awele are also used [14]. 

Awari is played on a wooden board containing two rows of six pits. Each 
player controls the row on his side of the board. South's pits (from left to right, 
as seen by South) are named A through F, while North's pits (from left to 
right, as seen by North) are named a through f. At the right-hand side of each 
row, an auxiliary pit is used to contain a player's captured stones. At the start 
of the game each pit contains four stones, for a total of 48 stones on the board. 
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At each move, a player selects a non-empty pit X from his row. Starting with 
X's  neighbour's pit, he then sows all stones from X, one at the time, 
counter-clockwise over the board (of course, omitting the two auxiliary pits). If 
X contains sufficient stones to go around the board (12 stones or more),  pit X 

is skipped and sowing continues. Thus, after the move, X will always be empty. 
Finally, captured stones, if any, are removed. Stones are captured if the last 
stone sown lands in an enemy pit which after landing contains 2 or 3 stones. If 
such a capture is made and if the preceding pit is an enemy pit that contains 2 
or 3 stones (of course, after sowing), then those stones are also captured. This 
procedure  is repeated for preceding pits and ends when either a pit is 
encountered which contains a number of stones other than 2 or 3, or when the 
end of the opposing row is reached. 

A move is described by the name of the pit, followed by the number of 
stones sown (the name of the pit by itself defines the move, but such a notation 
is prone to error). The number of stones captured, if any, is indicated by the 

amount  preceded by a " x " .  In Fig. 11, an example position is shown with 
South to move. Legal moves for South are: A1,  C4 x 2, D19 x 7, E4, and 
F 2 × 4 .  

The goal of Awari is to capture more stones than your opponent.  Thus the 
game ends as soon as one of the players has collected 25 or more stones. 
However ,  two other conditions exist which terminate the game. First, if a 
player is unable to move (i.e., all his pits are empty),  the remaining stones are 
captured by his opponent.  Second, if the same position is encountered for the 
third time, with the same player to move, the remaining stones on the board 
are evenly divided among the players. In all cases, after the end of the game, 
the winner is the player who has captured most stones. If both players have 
captured 24 stones, the game is drawn. 

A last atypical rule exists to avoid that players run out of moves early in the 
game. Whenever  possible, a player is forced to choose such a move that his 
opponent  is able to make a reply move. It is, however, not compulsory to look 
one or several moves ahead to ensure that the opponent  will continue to be 
able to reply. As an example, Fig. 12 shows a position in which South by 
playing 1. B1 can deliberately create a position in which he is unable to offer 
North any stones on his next move, since after North's move 1 . . . .  f l  none of 

North 
f e d c b a 

0 0 1 3 1 1 
5 

1 0 4 19 4 2 

A B C D E 
South (to move) 

F 

Fig. 11. A position with legal moves A1,  C4 x 2, DI9  x 7, E4, and F2 × 4. 
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North 
,[ e d c b a 

1 0 0 0 0 0 
23 22 

0 1 0 0 1 0 

A B C D E F 
South (to move) 

Fig. 12. I. BI  f l  wins. After  1. E l ?  f l ,  South must play 2. F1. 

South's possible moves (2. A 1, 2. C1, or 2. E1 ) results in a position in which 
North can move. By playing 1. B1 South will capture all three remaining stones 
after his second move, and hence wins the game. However, should he play 1. 
El ,  then after 1 . . . .  f l  he is forced to play 2. F1, leaving the game for the 
moment undecided. 

6.2. Selected Awari positions 

In 1990 we constructed an Awari-playing tournament program, named 
Lithidion, which uses a-/3 search and endgame databases for all positions of 13 
stones and less. The positions in our experiments are taken from the official 
games played by Lithidion and MARCO at the Second Computer Olympiad 
(London, August 1990) reported in [24]. MARCO, programmed by Remi 
Nierat, was the winner of the Awari tournament of the First Computer 
Olympiad (London, August 1989) as recorded in [23]. Lithidion won the I990 
competition by five to nil due to its superior play in the late middle game and 
endgame (using its databases); MARCO played a slightly better opening and 

early middle game. 
For many games, notably Chess, it is a habit to perform post-mortem 

analyses determining the game-theoretical value of critical positions. For 
Awari, we are interested in determining the game-theoretical value of game 
positions not in the databases. Immediately after the match, we thus analyzed 
the fifth game, in which it was shown that MARCO had missed a winning 
variation in a seemingly hopeless position [7]. 

For this article, we have investigated all late-middle-game positions of the 
five tournament games, as far as resources allowed us to perform this task. We 
used three implemented search algorithms. In all five games we started from a 
position with a known (database) outcome, then we went backwards until a 
position was reached which none of the three algorithms could solve using the 
allotted resources. 

6.3. Implementations of  a-/3 search 

Since tournament programs for games such as Chess, Othello, and Awari are 
(almost) all based on variants of a-/3 search, this search procedure is the 
natural sparring partner for the new pn-search algorithm. 
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The first variant of the a-/3 iterative-deepening search has the following 
characteristics. At each node, moves are pre-ordered on capture size. The 
largest captures are evaluated first, since the resultant positions are assumed to 
hit a database more quickly, leading to a fast determination of the position 
value for the player to move. Another  reason for doing captures first is that 
they are often good moves anyway. An iterative-deepening search is performed 
with a depth increase of 1 per iteration. The result of each iteration is both a 
window of the remaining possible values, and a move ordering for the full 
principal variant. The search terminates as soon as the value of a position has 

been determined. 
The second variant of the a-/3 iterative-deepening search has the same 

characteristics as the previous one, but is extended with a transposition table of 
a quarter  million entries. A transposition table is a hash table containing 

positions which have been evaluated earlier during the search. Whenever  a 
position is examined it is checked whether the position is stored in the 
transposition table, and if so, whether the previous evaluations can be used for 
the current examination. In case of a collision in the transposition table, 
preference has been given to positions which had been searched more deeply. 
At  each transposition-table entry the full G6del code of the position repre- 
sented has been stored to ensure complete reliability of the values extracted 

from it. 
Especially in the middle game, when empty pits and pits containing single 

stones are common, transposition tables are useful in Awari, as will transpire 
from the results of our experiments presented in Section 7. 

6.4. Comparing the performances 

When selecting a search algorithm for an application, the elapsed CPU time 
is an important criterion. However,  many distinct factors, such as the static 
node-evaluation time and several implementation details, make it difficult to 
use this criterion for comparison with other results and for generalization to 
other  domains. 

We therefore compare the number of nodes visited as do most authors. In 
this case, however,  a careful analysis is needed to determine the fairest way to 
compare the node counts. 

First, let us consider the number of nodes visited by pn-search. For a 
two-valued search, we merely count the number of nodes created during the 
search. For a binary multi-valued search, we sum the number of generated 
nodes of each two-valued search, and thus obtain a total number of nodes 
visited. We remark that in many cases two or more of the two-valued searches 
visit a large number of identical nodes. Thus, the number of nodes visited 
could be reduced by reusing the previous search tree. The disadvantage of such 
a reuse would be that the tree-reduction techniques described in Section 4 can 
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no longer be applied. As a result, more nodes should be kept in memory at the 
same time and the algorithm also becomes somewhat more complex. We have 
therefore included the extra nodes visited in our node counts. 

Second, let us consider the number of nodes visited by the a-/3 iterative- 
deepening search. On the one hand, we could sum the number of nodes visited 
in each iteration. However, this would be unfair to a-fl  iterative-deepening 
search, since a smaller number of iterations (e.g., by searching to even-ply 
depths only) may result in almost the same ordering and thus reduce the 
number of nodes visited. On the other hand, we could just take the number of 
nodes visited in the last iteration. But that would be unfair towards pn-search, 
as the last iteration often starts with a far reduced window of possible root 
values, thus using more than only the move ordering of the previous iterations. 
Moreover, the a-/3 iterative-deepening search with transposition tables obtains 
many early cut-offs during the last iteration, due to the results of previous 
iterations stored in the transposition table. 

As a measure of comparison, we have chosen to count at iteration i only the 
nodes at depth i. Then the extra iterations are only an asset to the a-/3 
iterative-deepening search, without costing it anything in terms of the number 
of visited nodes. We remark that, if, by re-ordering the moves, in a new 
iteration terminal nodes appear, which are not at the deepest level, they are 
not counted at all. This slight bias in favour of the a-/3 iterative-deepening 
search does not influence the results. 

To summarize, for pn-search all nodes grown during the multi-valued search 
are counted, while for the a-/3 iterative-deepening searches nodes at depth i 
are counted only during iteration i. 

7. Results on Awari 

In this section we compare three tree-search algorithms (pn-search, a-fl  
iterative-deepening search with and without transposition tables) on Awari 
positions taken from five tournament games. First we present the exact figures 
of the algorithms' performances in five tables. Then we draw conclusions from 
the test results, and present a graphical representation indicating the average 
gain of pn-search with respect to a-/3 iterative-deepening search. Finally, we 
provide some results on our tournament program Lithidion. 

7.1. Test figures o f  five tournament games 

The results of the three search procedures on the submitted positions of the 
five tournament games are presented in the Tables 1-5, of which Tables 2-5 
are exhibited in Appendix A. For pn-search, each two-valued search was 
terminated as soon as the part of the tree held in memory exceeded 2,400,000 
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Test results of game 5. 
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Number of nodes 

Position a-/3 pn-search 
(to move) a-/3 with trans. (sum) max pos max tree 

55 (N) 1 1 5 1 1 
55 (S) 212 188 419 231 78 
54 (N) 245 225 843 239 79 
54 (S) 49,671 5,670 1,589 749 198 
53 (N) 318,119 12,820 4,271 1,278 523 
53 (S) 1,709,963 366,618 5,727 2,503 889 
52 (N) 3,475,319 458,497 11,492 2,900 829 
52 (S) 15,502,284 2,874,623 87,967 47,162 26,180 
51 (N) 51,176,384 6,853,242 90,150 38,215 23,541 
51 (S) 37,965,868 2,433,370 224,314 156,348 43,205 
50 (N) 144,071,919 3,134,803 768,686 344,395 87,903 
50 (S) 161,134,944 5,378,362 613,750 397,154 ~83,966 
49 (N) 24,879,754 2,977,981 668,746 382,383 ~105,604 
49 (S) 27,440,022 3,508,885 799,694 369,907 ~ 119,737 
48 (N) 75,709,058 4,899,017 898,058 554,404 ~- 145,802 
48 (S) 75,837,856 4,961,444 1,340,785 554,416 =145,791 
47 (N) 75,837,857 4,961,445 902,685 554,417 =145,792 
47 (S) 76,126,790 5,000,194 1,349,656 554,679 ~145,605 
46 (N) 76,126,791 5,000,195 910,627 554,680 ~145,606 
46 (S) 96,567,363 6,390,241 2,109,880 903,273 ~208,961 
45 (N) 38,673,386 9,605,678 4 ,199 ,020  1 , 4 4 2 , 7 5 8  =617,544 
45 (S) 39,486,568 1 0 , 3 6 9 , 2 2 3  4 ,722 ,589  1 ,442 ,835  =617,473 
44 (N) 50,133,433 1 4 , 9 0 3 , 2 7 9  4 , 3 4 1 , 9 3 2  1 ,451 ,921  ~634,121 
44 (S) 61,816,867 1 1 , 2 8 4 , 0 3 0  4 ,789 ,675  1 ,452 ,571  ~633,620 
43 (N) 104,434,567 2 3 , 3 2 7 , 1 6 0  4 ,377 ,050  1 ,454 ,076  ~633,976 
43 (S) 118,018,891 2 8 , 9 6 0 , 4 0 4  5 ,420 ,622  1 ,583 ,829  ~-633,914 
42 (N) 361,547,784 6 2 , 1 6 4 , 0 3 6  9 ,857 ,925  3 ,758 ,110  ~1,251,625 
42 (S) >500,000,000 > 100,000,000 14,703,057 5 ,539 ,659  ~2,368,832 
41 (N) >500,000,000 >100,000,000 17,099,650 5 ,562 ,074  =2,368,622 

nodes. Using the first tree-reduction technique, trees of up to ten million nodes 
could be searched for a total of over ten million nodes per multi-valued search. 
For the ~-/3 iterative-deepening search without transposition tables the search 
was terminated when more than 500,000,000 nodes were searched, while the 
a-/3 iterative-deepening search with transposition tables was terminated after 
100,000,000 nodes. 

Each table consists of two columns with the heading "Position" and "Num- 
ber of nodes" respectively; the latter is subdivided into five columns containing 
experimental results on the three search procedures. Each position entry 
represents an Awari position, being the position of the game under considera- 
tion (i.e., game 1 to 5); the exact position is described by its move number, 
with the side to move in parentheses. The analysis as shown in the tables 
proceeds retrogradely. The first position analyzed is the position in which the 
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transition to database knowledge (perfect knowledge) takes place, i.e., in 
Table 1: the position 55(N). The analysis is performed up to the point where 
all three search techniques fail to solve a position. For reproduction purposes 
of our experiments the game scores of all five games are available on request 
[5]. The five columns with experimental results on the number of nodes visited 
are to be read as follows. The column headed "a-/3" contains the number of 
nodes searched by the a-fl iterative-deepening search without transposition 
tables. The column labelled "a-J3 with trans." contains the number of nodes 
searched by the a-/3 iterative-deepening search with transposition tables. The 
next column, labelled "pn-search (sum)", contains the number of nodes 
searched by a multi-valued pn-search, being the sum of all individual two- 
valued pn-searches. The column "max pos" contains the number of visited 
nodes taken from the largest tree of all two-valued pn-searches. The last 
column, labelled "max tree", contains the maximum size of the two-valued 
pn-search tree at any time during the search. Any number preceded by a ~ is 
an estimate, which can be up to 5% off. 

The fifth game (cf. Table 1) has been analyzed most deeply, which can be 
explained by the course of the game: after 33 moves only 19 stones remained 
on the board. From the 33rd move 42 half-moves were played without any 
capture (cf. Appendix B), during which South created a strong positional 
advantage. A majority of these 19-stone positions were successfully analyzed 
by all three algorithms. The remarkable increase in node counts in the "a - f l "  
column going from move 49 of North to move 50 of South can be explained as 
follows. At move 49, North could choose between a move which would end the 
game relatively quickly and a move which would lengthen the game, both with 
equal outcome. North chose the latter option and thus amplified the a-/3 search 
tree. The reduction-of-nodes factor of pn-search with respect to c~-/3 iterative- 
deepening search without transposition tables ranges from 8 to more than 560, 
for positions where more than 1,000 nodes are involved. The same factor with 
respect to a-/3 iterative-deepening search with transposition tables ranges from 

more than 2 to more than 75. 

7.2. Interpretation of the test results 

In all five tables it is observed that in searches terminating within a few 
hundred nodes pn-search does not perform as well as a-/3 search. The 
explanation is as follows. If most moves lead directly to database positions, 
only a small number of nodes must be searched. All three algorithms then face 
the same small search tree. However, pn-search must search this tree several 
times. (For instance, for the 19-stone position of Table 1, 39 possible values 
exist, resulting in six steps in the binary search.) A detailed inspection of the 
separate two-valued pn-searches showed that in four cases only, a two-valued 
pn-search resulted in a larger tree than the trees searched by a-/3 search. In 
each of these four cases, the difference was less than 50 nodes. 
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In all positions but one where pn-search visits more than a thousand nodes, 
pn-search outperforms both variants of a-/3 iterative-deepening search. More- 
over, the Tables 1-5 clearly show that a-/3 iterative-deepening search without 
transposition tables is outperformed by one or two orders of magnitude in 
positions where pn-search only searches approximately one million positions. 
When extrapolating, we remark that this factor tends to increase with the size 
of the search tree. Without any overstatement we safely claim that a-/3 
iterative-deepening search without transposition tables is no match for pn- 
search. And although transposition tables greatly improve the performance of 
a-/3 iterative-deepening search on Awari positions, as can be seen from the 
Tables 1-5, pn-search still claims to do much better, having tree sizes often 
differing an order of magnitude. 

In Fig. 13, we have generalized the figures of the Tables 1-5. For the 
purpose of comparison we have taken the a-/3 iterative-deepening search 
without transposition tables as the standard search algorithm. This choice 
enables us to show the impact of the use of transposition tables as well as the 
effectiveness of pn-search. We have transferred all tree sizes to manageable 
classes. Therefore, we have chosen class n to contain all tree sizes ranging from 
2 3n to 2 3(n+1). Thus, the class boundaries are 2 °, 2 3, 2 6, etc. Next we have 
distributed all positions (from the five tables) over the various classes. Each 
position is placed in a class according to the tree size of a-/3 iterative-deepening 
search without transposition tables (cf. column "a-/3"). Hence, within each 
class we find positions for which the sizes of the trees searched by a-/3 
iterative-deepening search without transposition tables are of equal magnitude. 

For each of the entries in a class, we determine the size of the search tree 
searched by pn-search (cf. column "pn-search (sum)"). These tree sizes are 
averaged. For each class of positions we thus obtain the average of the sizes of 
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trees searched by pn-search. The same procedure has been applied to the 
corresponding set of a-fl iterative-deepening searches. The log 2 of the results 
of these calculations have been presented in Fig. 13. The figure shows that a-/3 
iterative-deepening search with transposition tables clearly outperforms the 
standard a-/3 iterative-deepening search without transposition tables. More- 
over, it indicates that pn-search outperforms both. Furthermore, it may be 
remarked that the pn-search performance seems to intensify when the tree size 
increases. 

An example may elucidate the results obtained. The small square at coordi- 
nates approximately (222, 64) indicates that Awari positions solved by a-/3 
search in 222 (~4,200,000 positions) were solved by pn-search with a reduction 
factor in tree size of 64, i.e., approximately 65,000 positions were needed. 

We conclude our interpretation of test results with the statement that for at 
least one domain--Awari--pn-search is distinctly superior to sophisticated 
implementations of a-/3 search. 

7.3. Pn-search in Lithidion 

At the Third Computer Olympiad played a few months after the experiments 
of the previous sections, Lithidion played against a strong newcomer, MyPro- 
gram, written by Erik van Riet Paap [38]. MyProgram used a 16-stone end- 
game database, transposition tables, singular extensions and a fast a-/3 search 
algorithm (35,000 nodes/sec on a 486-33 MHz). 

For the tournament, Lithidion had been equipped with a 17-stone endgame 
database. The transposition table was not used, as it slowed down the search 
too much, and still only 20,000nodes/sec were calculated on a SPARC- 
station 2. The main new feature of Lithidion, however, was its application of 
pn-search. After every move generated by the a-/3 search, a two-valued 
pn-search was performed up to a maximum tree size of 150,000 nodes to 
investigate whether the move was a game-theoretical loss. If so, another move 
was generated by the a-/3 search, and the procedure was repeated until a 
non-losing move was found, or all moves were checked. 

Moreover, in the opponent's thinking time, all his moves were checked to 
see whether a winning line for Lithidion could be found, again up to a tree size 
of 150,000 nodes. 

The tournament was won with the smallest possible difference by Lithidion 
(3 won, 1 drawn, 2 lost). In two games, Lithidion found a deep winning line 
using pn-search several moves before the opponent's a-/3 search found the 
same result. In game 5, a winning line of 28-ply was found using a tree of only 
263,000 nodes, while the maximum tree size at any time during the search 
remained within the 150,000 nodes limit (cf. Section 4.1, DeleteSolved- 
Subtrees). 

Using Lithidion's new tournament version, the fifth game of the match 
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against MARCO (cf. Section 7.1) was replayed. It turned out that at move 15, 
MARCO played a losing move, whicb Lithidion found at tournament speed in 
283,000 nodes (40-ply), again staying within the 150,000 nodes limit. 

Comparing Lithidion's average search depth at tournament speed (15-20 
ply) with the 15-20 ply plus extensions search depth of MyProgram (approx. 
2,000,000 nodes per move), we are convinced that the early wins found by 
Lithidion in two of the three won games were a major contribution to its 
tournament victory. It shows that pn-search is a major asset to Awari-playing 
programs, not only for post-mortem analysis, but also for tournament play. 

8. Generalizing the test results 

In our preliminary analysis (cf. Sections 1 and 2) we have stressed that 
pn-search may perform well if the search tree is sufficiently non-uniform. 
Clearly, Awari game trees meet this requirement. Moreover, we have seen that 
pn-search outperforms a-/3 iterative-deepening search convincingly, even when 
the a-/3 iterative-deepening search is enhanced with transposition tables (cf. 
Section 7). From these results we believe that we may generalize to other 
games with sufficiently non-uniform search trees, such as Othello and 
Checkers. Below we support this generalization briefly. 

Tournament programs for Othello search at the end of the game rather 
deeply to determine the game-theoretical value of the position. The search 
trees built have small and varying branching factors (from 1 to around 10). 
Pn-search should therefore be able to determine the game-theoretical value of 
a position earlier in the game than a-/3 iterative-deepening search. 

In Checkers (8 × 8), the average branching factor is rather small (1.2 for 
capture moves, about 8 for non-captures), although it varies less than in Awari 
or Othello. Still, forced moves create extra non-uniformity in the tree. We 
believe that Checkers (and Draughts (10 × 10)) therefore is a domain on which 
pn-search may be implemented with success. 

In Chess, the average branching factor (36) is larger and varies less than in 
all games discussed so far. Even though pn-search's predecessors have mainly 
been applied to Chess, we, maybe surprisingly, speculate that in this domain 
pn-search is not likely to be a good alternative to ~-/3 search. 

In summary, disregarding Connect-Four, Qubic, and Go-Moku, we conjec- 
ture that pn-search may be implemented successfully in tournament programs 
for Awari, Othello, Checkers, and Draughts. 

Although emphasis has been placed on solving positions rather than on 
taking the right decision per  se, we would like to argue that the heuristic 
decision making has been moved from the obvious comparison of two (or 
more) move evaluations towards an implicit search-strategy decision making 
which leads to a desired position. This means a trade-off between knowledge 
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and search in the direction of search. Hence, the more powerful the machine, 
the better the search results will be. As a direct consequence of the algorithmic 
ideas on pn-search, solutions to other interesting AI problems, such as Elkan's 
[15] application to theorem proving will be within our horizon. 

9. Conclusions 

It has become clear that pn-search adequately treats multi-valued non- 
uniform trees. Moreover, the current article has shown that pn-search is able to 
find the theoretical value in difficult positions, where other search techniques 
fail. Pn-search aims at proving the true value of the root of a minimax tree 
whereas, for instance, cn-search has as its goal to establish it unlikely that the 
root's value will change (cf. Section 3). 

The main idea of pn-search is that in any max node it tries to prove the 
current upper bound of the root with the least possible effort, and at any min 
node to disprove the current upper bound as quickly as possible, regardless of 
the new upper bound which may result of such a disproof. The power of 
pn-search's dealing with multi-valued non-uniform trees resides in its treat- 
ment: the search takes place as a series of proofs in two-valued trees. 

In pn-search, we have approached the well-known disadvantage of all 
variants of cn-search, viz. the requirement to keep the entire search tree in 
memory, by two reduction techniques, DeleteSolvedSubtrees and 
DeleteLeastProving (cf. Section 4.1). These were shown to be successful (cf. 
Section 7.3). 

In three applications, viz. tournament play, post-mortem analysis, and game 
solving, pn-search has proven to be a competent best-first algorithm. From our 
experiments it is clear that in non-uniform trees pn-search outperforms a-/3 
iterative-deepening search without and with transposition tables (cf. Section 
7.2). It also outperforms sophisticated implementations of a-/3 search variants 
in the Awari endgame under tournament conditions (cf. Section 7.3). The 
game-solving ability has been proved by cracking the games Connect-Four, 
Qubic and Go-Moku (cf. Section 5). 

We expect that pnosearch soon will become a major contributing factor to 
game-playing programs for many different games and that it will show its 
merits in the field of theorem proving. 

Appendix A 

In Tables 2-5 we have tabulated the results of the post-mortem analysis of 
the first four games played between MARCO and Lithidion (cf. Section 7.2). 
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Table 2 
Test results of game 1. 

Number of nodes 

Position a -/3 pn-search 
(to move) a-/3 with trans. (sum) max pos max tree 

21 (N) 1 1 5 1 1 
21 (S) 3,667,963 73,386 96,988 38,163 19,375 
20 (N) 2,187,888 127,172 144,858 40,856 21,4~22 
20 (S) 6,368,724 540,573 168,858 65,561 29,313 
19 (N) 28,001,675 1,766,418 182,516 66,170 29,893 

Table 3 
Test results of game 2. 

Number of nodes 

Position a -/3 pn-search 
(to move) a-fl with trans. (sum) max pos max tree 

23 (N) 1 1 4 1 1 
23 (S) 85 53 165 63 20 
22 (N) 94 67 150 72 24 
22 (S) 5,928 4,625 2,339 1,183 549 
21 (N) 266,958,048 69 ,253 ,174  >7,383,208 >6,729,910 >2,400,000 
21 (S) >500,000,000 > 100,000,000 5 ,178 ,283  2 ,032 ,629  =979,683 
20 (N) 323,846,021 3 2 , 0 2 3 , 4 7 6  3 ,197 ,485  2,138,422 ~ 1,207,005 

Table 4 
Test results of game 3. 

Number of nodes 

Position a-/3 pn-search 
(to move) ~-/3 with trans. (sum) max pos max tree 

34 (N) 1 1 5 1 1 
34 (S) 1,882 932 897 394 145 
33 (N) 2,496 1,475 528 429 146 
33 (S) 12,137 7,345 11,271 5,278 1,625 
32 (N) 689,282 304,407 67,103 31,282 19,560 
32 (S) 26,654 17,137 17,607 8,569 2,958 
31 (N) 57,482 27,295 13,759 9,173 2,959 
31 (S) 57,784 27,542 16,667 9,194 2,960 
30 (N) 3,172,034 1,040,212 79,772 26,713 11,685 
30 (S) 3,803,572 963,044 103,727 48,820 18,176 
29 (N) 178,529,355 26,281,753 860,716 438,528 ~194,660 
29 (S) 182,125,887 25,794,398 713,597 438,785 ~194,444 
28 (N) >500,000,000 > 100,000,000 6 ,128,261 3 ,965,303 ~1,467,315 
28 (S) >500,000,000 > 100,000,000 6 ,532 ,084  3 ,982,276 =1,460,310 
27 (N) > 5 0 0 , 0 0 0 , 0 0 0  97,395,265 153,139 72,213 22,082 
27 (S) > 5 0 0 , 0 0 0 , 0 0 0  97,395,266 84,438 72,214 22,083 
26 (N) >500,000,000 > 100,000,000 3 ,665 ,820  3 ,037,312 =1,438,987 
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Table 5 
Test results of game 4. 

Number of nodes 

Position a-/3 pn-search 
(to move) a-/3 with trans. (sum) max pos max tree 

25 (S) 1 1 4 ] 1 
24 (N) 15 15 25 10 8 
24 (S) 4,169 3,783 1,034 336 299 
23 (N) 10,556 5,777 1,492 411 268 
23 (S) 12,544 7,169 16,503 14,951 13,663 
22 (N) 112,031 52,938 21,751 16,922 13,664 
22 (S) 273,576 144,032 2,342 721 380 
21 (N) 778,702 286,704 153,929 105,342 ~40,646 
21 (S) 1,182,772 437,521 108,942 105,474 ~40,640 
20 (N) 4,097,062 720,591 194,358 121,433 =62,995 
20 (S) 4,112,651 727,356 128,264 121,976 =62,861 
19 (N) 32,213,813 8,785,109 636,140 394,360 =127,175 
19 (S) >500,000,000 > 100,000,000 1,984,524 535,948 ~260,170 

Appendix B 

Below we have reproduced the game score of the fifth game of the match 

be tween M A R C O  and Lithidion. 

Round 5: South: M A R C O .  North:  Lithidion. 

1. D 4 b 5 2 .  B 4 e 5 x 2 3 .  C 6 b 1 4 .  D1 f65 .  C 1 c 7 × 3 6 .  C 1 d 6 x 2 7 .  B 4 a 6 8 .  

A10 41 9. D2 f3 10. C4 al  11. A1 e4 12. A1 f l  13. B5 d2 14. A1 e l  i5. C2 

f2 x 2 16. D3 x 2 c2 17. A1 e l  18. B1 b4 19. F14 x 7 f3 x 7 20. D1 e2 21. A1 f l  

22. A1 d3 23. B2 f l  × 2 24. D1 e l  25. C1 fl  26. E19 42 27. B1 f2 28. D2 e2 29. 
E1 d2 30. B1 b3 31. A5 d l  32. B1 f2 33. E1 c4 x 2 34. D1 f l  35. A1 d l  36. E1 

e5 37. A1 f l  38. C6 cl  39. D2 a l  40. B4 b2 41. A1 d2 42. C1 e l  43. B1 cl  44. 

D2 d l  45. C1 f2 46. B1 e l  47. A1 f l  48. E4 c l  49. D1 b l  50. C1 dl  51. A1 e l  
52. E1 a l  53. D1 b l  54. E1 c2 55. F14 × 6 e2 x 2 56. C1 d2 57. D2 e l  58. B3 f5 
59. F1 a l  60. B1 b l  61. E4 × 2 a l  62. A1 b2 63. D2 d l  64. E1 cl  65. C3 e l  66. 

B1 d l  67. D1 f l  68. A1 e l  69. C1 f l  70. E2 a l  71. B1 b l  72. D1 cl  73. A1 d l  
74. C1 e l  75. D1 f l  76. E2 a l  77. B1 b l  78. A1 cl  79. B1 dl  80. C2 el  81. D1 
f l  82. E2 a l  83. A1 b l  84. B1 cl  85. C l  dl  86. D1 e l  87. F7 b l  88, A1 f2 × 2 
89. A1 e l  90. B1 d l  91. E1 a l  92. C1 c2 93. D1 b l  94. F1 e2 95. E1 a l  96. F1 

d l  97. A1 f2 × 2. 

Nor th  has won by 26 stones to 17. 
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