
Chapter 2
Simulated Annealing

Patrick Siarry

2.1 Introduction

The complex structure of the configuration space of a hard optimization problem
has inspired people to draw analogies with physical phenomena, which led three
researchers at IBM—Kirkpatrick, Gelatt, and Vecchi—to propose in 1982, and to
publish in 1983, a new iterative method, the simulated annealing technique [23],
which can avoid local minima. A similar method, developed independently at the
same time by Cerny [7], was published in 1985.

Since its discovery, the simulated annealing method has proved its effectiveness
in various fields, such as the design of electronic circuits, image processing, the
collection of household garbage, and the organization of the data-processing network
of the French Loto Lottery. On the other hand, it has been found too greedy to solve
certain combinatorial optimization problems, which could be solved better by specific
heuristics, or completely incapable of solving them.

This chapter starts by initially explaining the principle of the method, with the
help of an example of the problem of the layout of an electronic circuit. This is
followed by a simplified description of some theoretical approaches to simulated
annealing, which underlines its strong points (conditional guaranteed convergence
towards a global optimum) and its weak points (tuning of the parameters, which can
be delicate in practice). Then various techniques for parallelization of the method are
discussed. This is followed by the presentation of some applications. In conclusion,
we recapitulate the advantages and the most significant drawbacks of simulated
annealing. We put forward some simple practical suggestions, intended for users
who are planning to develop their first application based on simulated annealing. In
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Sect. 2.8, we recapitulate the main results of the modeling of simulated annealing
based on Markov chains.

This chapter presents, in part, a summary of the review book on the simulated
annealing technique [42], which we published at the beginning of 1989; this presenta-
tion is augmented by mentioning more recent developments [31, 40]. The references
mentioned in the text were selected either because they played a significant role or
because they illustrate a specific point in the discussion. A much more exhaustive
bibliography—although old—can be found in [37, 42, 47, 50] and in the article
[8] on the subject. Interested readers are also recommended to read the detailed
presentations of simulated annealing in the article [29] and in Chap. 3 of [31].

2.2 Presentation of the Method

2.2.1 Analogy Between an Optimization Problem
and Some Physical Phenomena

The idea of simulated annealing can be illustrated by a picture inspired by the prob-
lem of the layout and routing of electronic circuits: let us assume that a relatively
inexperienced electronics specialist has randomly spread the components out on a
plane, and connections have been made between them without worrying about tech-
nological constraints.

It is clear that the solution obtained is an unacceptable one. The purpose of devel-
oping a layout-routing program is to transform this disordered situation to an ordered
electronic circuit diagram, where all connections are rectilinear, and the components
are aligned and placed so as to minimize the length of the connections. In other
words, this program must carry out a disorder–order transformation which, starting
from a “liquid of components,” leads to an ordered “solid.”

However, such a transformation occurs spontaneously in nature if the tempera-
ture of a system is gradually lowered; there are computer-based digital simulation
techniques available which show the behavior of sets of particles interacting in a way
that depends on the temperature. In order to apply these techniques to optimization
problems, an analogy can be established which is presented in Table 2.1.

Table 2.1 Analogy between an optimization problem and a physical system

Optimization problem Physical system

Objective function Free energy

Parameters of the problem “Coordinates” of the particles

Find a “good” configuration (or even an
optimal configuration)

Find the low-energy states
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To lead a physical system to a low-energy state, physicists generally use an anneal-
ing technique: we will examine how this method of treatment of materials (real
annealing) is helpful in dealing with an optimization problem (simulated annealing).

2.2.2 Real Annealing and Simulated Annealing

To modify the state of a material, physicists have an adjustable parameter: the tem-
perature. To be specific, annealing is a strategy where an optimum state can be
approached by controlling the temperature. To gain a deeper understanding, let us
consider the example of the growth of a monocrystal. The annealing technique con-
sists in heating the material beforehand to impart high energy to it. Then the material is
cooled slowly, in a series of stages at particular temperatures, each of sufficient dura-
tion; if the decrease in temperature is too fast, it may cause defects which can be elim-
inated by local reheating. This strategy of a controlled decrease in the temperature
leads to a crystallized solid state, which is a stable state, corresponding to an absolute
minimum of energy. The opposite technique is that of quenching, which consists in
lowering the temperature of the material very quickly: this can lead to an amorphous
structure, a metastable state that corresponds to a local minimum of energy. In the
annealing technique, the cooling of the material causes a disorder–order transforma-
tion, while the quenching technique results in solidifying a disordered state.

The idea of using an annealing technique in order to deal with optimization prob-
lems gave rise to the simulated annealing technique. This consists in introducing a
control parameter in to the optimization process, which plays the role of the temper-
ature. The “temperature” of the system to be optimized must have the same effect
as the temperature of a physical system: it must condition the number of accessible
states and lead towards the optimal state if the temperature is lowered gradually in a
slow and well-controlled manner (as in the annealing technique), and towards a local
minimum if the temperature is lowered abruptly (as in the quenching technique).

To conclude, we have to describe an algorithm in such a way that will enable us
to implement annealing on a computer.

2.2.3 Simulated Annealing Algorithm

The algorithm is based on two results from statistical physics.
On one hand, when thermodynamic equilibrium is reached at a given temperature,

the probability that a physical system will have a given energy E is proportional to

the Boltzmann factor: e
−E
kBT , where kB denotes the Boltzmann constant. Then, the

distribution of the energy states is the Boltzmann distribution at the temperature
considered.

On the other hand, to simulate the evolution of a physical system towards its
thermodynamic equilibrium at a given temperature, the Metropolis algorithm [25]
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can be utilized: starting from a given configuration (in our case, an initial layout for all
the components), the system is subjected to an elementary modification (for example,
a component is relocated or two components are exchanged); if this transformation
causes a decrease in the objective function (or “energy”) of the system, it is accepted;
in contrast, if it causes an increase �E in the objective function, it may also be
accepted, but only with a probability e−�E/T . (In practice, this condition is realized
in the following manner: a real number is drawn at random, ranging between 0 and 1,
and a configuration causing a degradation by �E in the objective function is accepted
if the random number drawn is less than or equal to e−�E/T .) By repeatedly following
this Metropolis rule of acceptance, a sequence of configurations is generated, which
constitutes a Markov chain (in the sense that each configuration depends on only that
one which immediately precedes it). With this formalism in place, it is possible to
show that, when the chain is of infinite length (in practice, of “sufficient” length),
the system can reach (in practice, can approach) thermodynamic equilibrium at the
temperature considered: in other words, this leads us to a Boltzmann distribution of
the energy states at this temperature.

Hence the role given to the temperature by the Metropolis rule is well understood.
At high temperature, e−�E/T is close to 1, and therefore the majority of the moves
are accepted and the algorithm becomes equivalent to a simple random walk in the
configuration space. At low temperature, e−�E/T is close to 0, and therefore the
majority of the moves that increase the energy are rejected. Hence the algorithm
reminds us of a classical iterative improvement. At an intermediate temperature, the
algorithm intermittently allows transformations that degrade the objective function:
hence it leaves a chance for the system to be pulled out of a local minimum.

Once thermodynamic equilibrium is reached at a given temperature, the temper-
ature is lowered “slightly,” and a new Markov chain is implemented in this new tem-
perature stage (if the temperature is lowered too quickly, the evolution towards a new
thermodynamic equilibrium is slowed down: the theory of the method establishes a
narrow correlation between the rate of decrease in the temperature and the minimum
duration of the temperature stage). By comparing the successive Boltzmann distrib-
utions obtained at the end of the various temperature stages, a gradual increase in the
weight of the low-energy configurations can be noted: when the temperature tends
towards zero, the algorithm converges towards the absolute minimum of energy. In
practice, the process is terminated when the system is “solidified” (which means that
either the temperature has reached zero or no more moves causing an increase in
energy have been accepted during the stage).

2.3 Theoretical Approaches

The simulated annealing algorithm was implemented in many theoretical studies for
the following two reasons: on one hand, it was a new algorithm, for which it was
necessary to establish the conditions for convergence; and on the other hand, the
method contains many parameters and has many variants, whose effect or influence
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on the mechanism needed to be properly understood if one wished to implement the
method to maximum effect.

These approaches, especially those which appeared during the initial years of its
formulation, are presented in detail in the book [42]. Here, we focus on emphasizing
on the principal aspects treated in the literature. The theoretical convergence of
simulated annealing is analyzed first. Then those factors which are influential in the
operation of the algorithm are analyzed in detail: the structure of the configuration
space, the acceptance rules, and the annealing program.

2.3.1 Theoretical Convergence of Simulated Annealing

Many mathematicians have invested effort in research into the convergence of the
simulated annealing (see in particular [1, 16, 17]) and some of them have even
endeavored to develop a general model for the analysis of stochastic methods of
global optimization (notably [32, 33]). The main outcome of these theoretical stud-
ies is that under certain conditions (discussed later), simulated annealing probably
converges towards a global optimum, in the sense that it is possible to obtain a solu-
tion arbitrarily close to this optimum with a probability arbitrarily close to unity.
This result is, in itself, significant because it distinguishes simulated annealing from
other metaheuristic competitors, whose convergence is not guaranteed.

However, the establishment of the “conditions of convergence” is not unani-
mously accepted. Some of these conditions, such as those proposed by Aarts and Van
Laarhoven [1], are based on the assumption of decreasing the temperature in stages.
This property enables one to represent the optimization process in the form of com-
pletely connected homogeneous Markov chains, whose asymptotic behavior can be
described simply. It has also been shown that convergence is guaranteed provided
that, on one hand, reversibility is respected (the opposite of any allowed change must
also be allowed) and, on the other hand, connectivity of the configuration space is
also maintained (any state of the system can be reached starting from any other state
with the help of a finite number of elementary changes). This formalization has two
advantages:

• it enables us to legitimize the lowering of the temperature in stages, which improves
the convergence speed of the algorithm;

• it enables us to establish that a “good”-quality solution (located significantly close
to the global optimum) can be obtained by simulated annealing in a polynomial
time for certain NP-hard problems [1].

Some other authors, in particular Hajek et al. [16, 17], were interested in the
convergence of simulated annealing within the more general framework of the theory
of inhomogeneous Markov chains. In this case, the asymptotic behavior was the more
sensitive aspect of the study. The main result of this work was the following: the
algorithm converges towards a global optimum with a probability of unity if, as the
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time t tends towards infinity, the temperature T (t) does not decrease more quickly
than the expression C/log(t), where C is a constant related to the depth of the “energy
wells” of the problem. It should be stressed that the results of this theoretical work,
at present, are not sufficiently general and unambiguous to be used as a guide to an
experimental approach when one is confronted with a new problem. For example,
the logarithmic law of decrease of the temperature recommended by Hajek is not
used in practice for two major reasons: on one hand, it is generally impossible to
evaluate the depth of the energy wells of the problem, and, on the other hand, this
law leads to an unfavorable increase in computing time.

We now continue this analysis with careful, individual examination of the various
components of the algorithm.

2.3.2 Configuration Space

The configuration space plays a fundamental role in the effectiveness of the simu-
lated annealing technique in solving complex optimization problems. It is equipped
with a “topology,” originating from the concept of proximity between two configura-
tions: the “distance” between two configurations represents the minimum number of
elementary changes required to pass from one configuration to the other. Moreover,
there is an energy associated with each configuration, so that the configuration space
is characterized by an “energy landscape.” All of the difficulties of the optimization
problem lie in the fact that the energy landscape comprises of a large number of
valleys of varying depth, possibly relatively close to each other, which correspond
to local minima of energy.

It is clear that the shape of this landscape is not specific to the problem under study,
but depends to a large extent on the choice of the cost function and the choice of the
elementary changes. However, the required final solution, i.e., the global minimum
(or one of the global minima of comparable energy), must depend primarily on
the nature of the problem considered, and not (or very little) on these choices. We
have shown, with the help of an example problem of placement of building blocks,
considered specifically for this purpose, that an apparently sensitive problem can
be greatly simplified either by widening the allowable configuration space or by
choosing a better adapted topology [42].

Several authors have endeavored to establish general analytical relations between
certain properties of the configuration space and the convergence of simulated anneal-
ing. In particular, some of their work was directed towards an analysis of the energy
landscapes, and they sought to develop a link between “ultrametricity” and simulated
annealing [22, 30, 44]: the simulated annealing method would be more effective for
those optimization problems whose low local minima (i.e., the required solutions)
formed an ultrametric set. Thereafter, Sorkin [45] showed that certain fractal proper-
ties of the energy landscape induce polynomial convergence of simulated annealing;
Sorkin explained this on the basis of the effectiveness of the method in the field of
electronic circuit layouts. In addition, Azencott [3] utilized the “theory of cycles”
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(originally developed in the context of dynamic systems) to establish general explicit
relations between the geometry of the energy landscape and the expected performance
of simulated annealing. This work led to the proposal of the “method of distortions”
for the objective function, which significantly improved the quality of the solu-
tions for certain difficult problems [11]. However, all these approaches to simulated
annealing are still in a nascent stage, and their results have not yet been generalized.

Lastly, another aspect of immediate practical interest relates to the adaptation of
simulated annealing to the solution of continuous optimization problems [9, 39].
Here, we stress only the transformations necessary to make the step from “combina-
torial simulated annealing” to “continuous simulated annealing.” In fact, the method
was originally developed for application in the domain of combinatorial optimization
problems, where the free parameters can take discrete values only. In the majority
of these types of problems encountered in practice, the topology is almost always
considered as data for the problem: for example, in the traveling salesman problem,
the permutation of two cities has a natural tendency to generate round-trip routes
close to a given round-trip route. The same thing occurs in the problem of placement
of components when the exchange of two blocks is considered. On the other hand,
when the objective is to optimize a function of continuous variables, the topology has
to be updated. This gives rise to the concept of “adaptive topology”: here, the length
of the elementary steps is not imposed by the problem anymore. This choice must
instead be dictated by a compromise between two extreme situations: if the step is
too small, the program explores only a limited region of the configuration space; the
cost function is then improved very often, but by a negligible amount. In contrast, if
the step is too large, the test results are accepted only seldom, and they are almost
independent of each other. From the point of mathematical interest, it is necessary
to mention the work of Miclo [26], which was directed towards the convergence of
simulated annealing in the continuous case.

2.3.3 Rules of Acceptance

The principle of simulated annealing requires that one accepts, occasionally and
under the control of the “temperature,” an increase in the energy of the current state,
which enables it to be pulled out of a local minimum. The rule of acceptance generally
used is the Metropolis rule described in Sect. 2.2.3. This possesses the advantage that
it originates directly from statistical physics. There are, however, several variations
of this rule [42], which can be more effective from the point of view of computing
time.

Another aspect arises from examination of the following problem: at low tem-
perature, the rate of acceptance of the algorithm becomes very small, and hence
the method is ineffective. This is a well-known problem encountered in simulated
annealing, which can be solved by substituting the traditional Metropolis rule with an
accelerated alternative, called the “thermostat” [42], as soon as the rate of acceptance
falls too low. In practice, this methodology is rarely employed.
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2.3.4 Program of Annealing

The convergence speed of the simulated annealing methodology depends primarily
on two factors: the configuration space and the program of annealing. With regard to
the configuration space, readers have already been exposed to the effects of topology
on convergence and the shape of the energy landscape. Let us discuss the influence
of the “program of annealing”: this addresses the problem of controlling the “tem-
perature” as well as the possibility of a system reaching a solution as quickly as
possible. The program of annealing must specify the following values of the control
parameters for the temperature:

• the initial temperature;
• the length of the homogeneous Markov chains, i.e., the criterion for changing to

the next temperature stage;
• the law of decrease of the temperature;
• the criterion for program termination.

In the absence of general theoretical results which can be readily exploited, the
user has to resort to empirical adjustment of these parameters. For certain problems,
the task is complicated even further by the great sensitivity of the result (and the
computing time) to this adjustment. This aspect—which unites simulated annealing
with other metaheuristics—is an indisputable disadvantage of this method.

To elaborate on the subject a little more, we shall look at the characteristic of the
program of annealing that has drawn most attention: the law of decrease of the tem-
perature. The geometrical law of decrease, Tk+1 = α · Tk , α = constant, is a widely
accepted one, because of its simplicity. An alternative solution, potentially more
effective, is an adaptive law of the form Tk+1 = α(Tk) · Tk , but it is then necessary to
exercise a choice from among several laws suggested in the literature. One can show,
however, that several traditional adaptive laws, which have quite different origins
and mathematical expressions, are in practice equivalent (see Fig. 2.1), and can be
expressed in the following generic form:

Tk+1 =
(

1 − Tk · �(Tk)

σ 2 (Tk)

)
· Tk

where
σ 2 (Tk) = 〈

f 2
Tk

〉 − 〈
fTk

〉2
,

f denotes the objective function, and �(Tk) depends on the adaptive law selected.
The simplest adjustment, �(Tk) = constant, can then be made effective, although it
does not correspond to any of the traditional laws.

Owing to our inability to synthesize the results (both theoretical and experimental)
presented in the literature, which show some disparities, the reader is referred to
Sect. 2.7, where we propose a suitable tuning algorithm for the four parameters of
the program of annealing, which can often be useful at least to start with.
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Fig. 2.1 Lowering of the
temperature according to the
number of stages for the
geometrical law and several
traditional laws

Iteration

T

Those readers who are interested in the mathematical modeling of simulated
annealing are advised to refer to Sect. 2.8: the principal results produced by the
Markov formalism are described there.

2.4 Parallelization of the Simulated Annealing Algorithm

Often, the computing time becomes a critical factor in the economic evaluation of
the utility of a simulated annealing technique for applications to real industrial prob-
lems. A promising research direction to reduce this time is the parallelization of
the algorithm, which consists in simultaneously carrying out several of the calcu-
lations necessary for its realization. This step can be considered in the context of
the significant activity that has been developing around the algorithms and architec-
tures of parallel computation for quite some time now. This may appear paradoxical,
because of the sequential structure of the algorithm. Nevertheless, several types of
parallelization have been considered to date. A book [3] completely devoted to this
topic has been published; it describes simultaneously the rigorous mathematical
results available and the results, of simulations executed on parallel or sequential
computers. To provide a concrete idea, we shall describe the idea behind two prin-
cipal modes of parallelization, which are independent of the problem being dealt
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with and were suggested very soon after the invention of simulated annealing. The
distinction between these two modes remains relevant today, as has been shown in
the recent status of the state of the art described by Delamarre and Virot [11].

The first type of parallelization [2] consists in implementing several Markov chain
computations in parallel, by using K elementary processors. To implement this,
the algorithm is decomposed into K elementary processes, constituting K Markov
chains. Let L be the length of these Markov chains, assumed constant, each chain
is divided into K subchains of length L/K . The first processor executes the first
chain at the initial temperature, and implements the first L/K elements of this chain
(i.e., the first subchain); then it calculates the temperature of the following Markov
chain, starting from the states already obtained. The second elementary processor
then begins executing the second Markov chain at this temperature, starting from the
final configuration of the first subchain of the first chain. During this time, the first
processor begins the second subchain of the first chain. This process continues for
the K elementary processors. It has been shown that this mode of parallelization—
described in more detail in [42]—allows one to divide the total computing time by
a factor K , if K is small compared with the total number of Markov chains carried
out. However, the procedure has a major disadvantage: its convergence towards an
optimum is not guaranteed. The formalism of Markov chains enables one to establish
that the convergence of simulated annealing is assured provided that the distribution
of the states, at the end of each Markov chain is close to the stationary distribution.
In the case of the algorithm described here, however, this closeness is not established
at the end of each subchain, and the larger the number K of processors in parallel,
the larger is the deviation from closeness.

The second type of parallelization [24, 35] consists in carrying out the computa-
tion in parallel for several states of the same Markov chain while keeping in mind the
following condition: at low temperature, the number of elementary transformations
rejected becomes very important; it is thus possible to assume that these moves are
produced by independent elementary processes, which may likely be implemented
in parallel. Then the computing time can be divided by approximately the number
of processes. One strategy consists in subdividing the algorithm into K elementary
processes, each of which is responsible for calculating the energy variations corre-
sponding to one or more elementary moves, and for carrying out the corresponding
Metropolis tests. Two operating modes are considered:

• At “high temperature,” a process corresponds to only one elementary move. Each
time K elementary processes are implemented in parallel, one can randomly
choose a transition from among those which have been accepted, and the memory,
containing the best solution known, is updated with the new configuration.

• At “low temperature,” the accepted moves become very rare: less than one transi-
tion is accepted for K moves carried out. Each process then consists in calculating
the energy variations corresponding to a succession of disturbances until one of
them is accepted. As soon as any of the processes succeeds, the memory is updated.

These two operating modes can ensure behavior, and in particular convergence,
which is strictly identical to that of sequential algorithms. This type of parallelization
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has been tested by experimenting on the optimization problem of the placement
of connected blocks [35]. We estimated the amount of computing time saved in
two cases: the placement of presumed point blocks in predetermined sites and the
placement of real blocks on a plane. With five elementary processes in parallel, the
saving in computing time was between 60 and 80 %, depending on the program of
annealing used. This work was then continued, in the thesis work of Roussel-Ragot
[34] by considering a theoretical model, which was validated by programming the
simulated annealing using a network of “transputers.”

In addition to these two principal types of parallelization of simulated annealing,
which should be applicable to any optimization problem, other methodologies have
been proposed to deal with specific problems. Some of these problems are problems
of placement of electronic components, problems in image processing and problems
of meshing of areas (for the finite element method). In each of these three cases,
information is distributed in a plane or in space, and each processor can be entrusted
with the task of optimizing the data pertaining to a geographical area by simulated
annealing; here information is exchanged periodically between neighboring proces-
sors.

Another step to reduce the cost of synchronization between processors has been
planned: the algorithms known as “asynchronous algorithms” are designed to calcu-
late the energy variations starting from partially out-of-date data. However, it seems
very complex and sensitive to control the admissible error, except for certain partic-
ular problems [12].

As an example, let us describe the asynchronous parallelization technique sug-
gested by Casotto et al. [6] to deal with the problem of the placement of electronic
components. The method consists in distributing the components to be placed into K
independent groups, assigned to K respective processors. Each processor applies the
simulated annealing technique to seek the optimal site for the components that belong
to its group. The processors function in parallel, and in an asynchronous manner with
respect to each other. All of them have access to a common memory, which contains
the current state of the circuit plan. When a processor plans to exchange the position
of a component in its group with that of a component in another group belonging
to another processor, it temporarily blocks the activity of that processor. It is clear
that the asynchronous working of the processors involves errors, in particular in the
calculation of the overlap between the blocks, and thus in the evaluation of the cost
function. In fact, when a given processor needs to evaluate the cost of a move (trans-
lation or permutation), it will search in the memory for the current positions of all the
components in the circuit. However, the information collected is partly erroneous,
since certain components are in the course of displacement because of the activities of
other processors. In order to limit these errors, the method is supplemented by the fol-
lowing two processes. On one hand, the distribution of the components between the
processors is in itself an object of optimization by the simulated annealing technique,
which is performed simultaneously with the optimization process already described:
in this manner, membership of the components geographically close to the same
group can be favored. In addition, the maximum amplitude of the moves carried out
by the components is reduced as the temperature decreases. Consequently, when the
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temperature decreases, the moves relate mainly to nearby components, which thus
generally belong to the same group. In this process, the interactions between the
groups can be reduced, thus reducing the frequency of the errors mentioned above.
This technique of parallelization of simulated annealing was validated using several
examples of real circuits: the algorithm functioned approximately six times faster
with eight processors than with only one, the results being of comparable quality to
those of the sequential algorithm.

2.5 Some Applications

The majority of the preceding theoretical approaches are based on asymptotic behav-
iors which impose several restrictive assumptions, very often causing excessive
increases in computing times. This is why, to solve real industrial problems under
reasonable conditions, it is often essential to adopt an experimental approach, which
may frequently result in crossing the barriers recommended by the theory. The sim-
ulated annealing method has proved to be interesting for solving many optimization
problems, both NP-hard and not. Some examples of these problems are presented
here.

2.5.1 Benchmark Problems of Combinatorial Optimization

The effectiveness of the method was initially tested on some “benchmark problems”
of combinatorial optimization. In this type of problem, the practical purpose is sec-
ondary: the initial objective is to develop the optimization method and to compare
its performance with that of other methods. We will detail only one example: that of
the traveling salesman problem.

The reason for the choice of this problem is that it is very simple to formulate
and, at the same time, very difficult to solve: the largest problems for which the
optimum has been found and proved comprise a few thousands of cities. To illustrate
the disorder–order transformation that occurs in the simulated annealing technique
as the temperature goes down, we present in Fig. 2.2 four intermediate configurations
obtained by Eric Taillard, in the case of 13 206 towns and villages in Switzerland.

Bonomi and Lutton also considered very high-dimensional examples, with
between 1000 and 10 000 cities [4]. They showed that, to avoid a prohibitive com-
puting time, the domain containing the cities can be deconstructed into areas, and
the moves for the route of the traveler can be forced so that they are limited to being
between cities located in contiguous areas. Figure 2.3 shows the effectiveness of
this algorithm for a problem comprising 10 000 cities: the length of this route does
not exceed that of the optimal route by more than 2 % (the length of the shortest
route can be estimated a priori when the number of cities is large). Bonomi and
Lutton compared simulated annealing with traditional techniques of optimization
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Fig. 2.2 The traveling salesman problem (13 206 cities): the better known configurations (length
L) at the end of four temperature stages (T )

Fig. 2.3 The traveling
salesman problem: solution,
by simulated annealing for a
case of 10 000 cities

for the traveling salesman problem: simulated annealing was slower for small-
dimensional problems (N lower than 100) but, on the other hand, it was far more pow-
erful for higher-dimensional problems (N higher than 800). The traveling salesman
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problem has been extensively studied to illustrate and establish several experimental
and theoretical developments in the simulated annealing method [42].

Many other benchmark problems of combinatorial optimization have also been
solved using simulated annealing [29, 42]: in particular, the problems of the “par-
titioning of a graph,” the “minimal coupling of points,” and“quadratic assignment.”
Comparison with the best known algorithms leads to different results, varying accord-
ing to the problems and the authors. Thus the studies by Johnson et al. [19–21], which
were devoted to a systematic comparison of several benchmark problems, conclude
that the only benchmark problem for which the results favor simulated annealing is
that of the partitioning of a graph. For some problems, promising results were only
obtained with the simulated annealing method for high-dimensional examples (a few
hundreds of variables), and at the cost of a high computing time. Therefore, if sim-
ulated annealing has the merit to be adapted simply to a great diversity of problems,
it cannot claim very much to supplement the specific algorithms that already exist
for these problems.

We now present the applications of simulated annealing to practical problems.
The first significant application of industrial interest was developed in the field of
electronic circuit design; this industrial sector still remains the domain in which the
greatest number of publications describing applications of simulated annealing have
been produced. Two applications in the area of electronics are discussed in detail in
the following two subsections. This is followed by discussions of other applications
in some other fields.

2.5.2 Layout of Electronic Circuits

The first application of the simulated annealing method to practical problems was
developed in the field of the layout and routing of electronic circuits [23, 41, 49].
Numerous studies have now been reported on this subject in several publications
and, in particular, two books have been completely devoted to this problem [37, 50].
Detailed bibliographies, concerning the work carried out in the initial period from
1982 to 1988 can be found in the books [37, 42, 47, 50].

The search for an optimal layout is generally carried out in two stages. The first
consists in calculating an initial placement quickly, by a constructive method: the
components are placed one after another, in order of decreasing connectivity. Then
an algorithm for iterative improvement is employed that gradually transforms, by
elementary moves (e.g., exchange of components, and operations of rotation or sym-
metry), the initial layout configuration. The algorithms for iterative improvement
of the layout differ according to the rule adopted for the succession of elementary
moves. Simulated annealing can be used in this second stage.

Our interest was in a unit of 25 identical blocks to be placed on predetermined
sites, which were the nodes of a planar square network. The list of connections was
such that, in the optimal configurations, each block would be connected only to its
closer neighbors (see Fig. 2.4a): an a priori knowledge of the global minima of the
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(a) Optimal configuration : L = 200 

(b)

SIMULATED 
ANNEALING 

CLASSICAL 
METHOD 

L = 775 

(c) Configuration corresponding to a local 
minimum of energy :  L = 225 

configuration : 
Random disordered 

Fig. 2.4 The traditional method getting trapped in a local minimum of energy

problem then made it easier to study the influence of the principal parameters of
the method on its convergence speed. The cost function was the overall Manhattan
length (i.e., the length of L-type) of the connections. The only allowed elementary
move was the permutation of two blocks. A detailed explanation for this benchmark
problem on layout design—which is a form of “quadratic assignment” problem—can
be found in [38, 43]. Here, the discussion will be limited to the presentation of two
examples of applications. First of all, to appreciate the effectiveness of the method,
we started with a completely disordered initial configuration (Fig. 2.4b), and an initial
“elevated” temperature (in the sense that at this temperature 90 % of the moves are
accepted). In this example, the temperature profile was that of a geometrical decrease,
of ratio 0.9. A global optimum of the problem could be obtained after 12 000 moves,
whereas the total number of possible configurations is about 1025.

To illustrate the advantages of the simulated annealing technique, we applied
the traditional method of iterative improvement (simulated annealing at zero tem-
perature), with the same initial configuration (see Fig. 2.4b), and allowed the same
number of permutations as during the preceding test. It was observed that the tra-
ditional method got trapped in a local minimum (Fig. 2.4c); it is clear that shifting
from this configuration to the optimal configuration as shown in Fig. 2.4a would
require several stages (at least five), the majority of which correspond to an increase
in energy, which is inadmissible in the traditional method. This particular problem of
placement made it possible to develop empirically a program of “adaptive” anneal-
ing, which could achieve a gain in computing time by a factor of 2; the lowering of
the temperature was carried out according to the law Tk+1 = Dk · Tk , where:

Dk = min

(
D0,

Ek

〈Ek〉
)
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Here, D0 = 0.5 to 0.9, Ek is the minimum energy of the configurations accepted
during stage k, and 〈Ek〉 is the average energy of the configurations accepted during
stage k. (At high temperature, Dk = Ek/〈Ek〉 is small, and hence the temperature is
lowered quickly; at low temperature, Dk = D0, which corresponds to slow cooling).

Then we considered a more complex problem consisting of positioning compo-
nents of different sizes, with the objective of simultaneous minimization of the length
of the necessary connections and of the surface area of the circuit used. In this case,
the translation of a block is a new means of iterative transformation of the layout.
Here we can observe that the blocks can overlap with each other, which is allowed
temporarily, but must generally be excluded from the final layout. This new con-
straint can be accommodated within the cost function of the problem by introducing
a new factor called the “overlapping surface” between the blocks. Calculating this
surface area can become very cumbersome when the circuit comprises many blocks.
For this reason the circuit was divided into several planar areas, whose size was such
that a block could overlap only with those blocks located in the same area or in a very
close area. The lists of the blocks belonging to each area were updated after each
move, using a chaining method. Moreover, to avoid leading to a circuit obstruction
such as an impossible routing, a fictitious increase in the dimensions of each block
was introduced. The calculation of the length of the connections consisted in deter-
mining, for each equipotential, the barycenter of the terminations, and then adding
the distances of L-type of the barycenter with each termination. Lastly, the topology
of the problem was adaptive, which can be described in the following manner: when
the temperature decreases, the maximum amplitude of the translations decreases,
and exchanges are considered more between neighboring blocks only.

With the simulated annealing algorithm, it was possible to optimize industrial
circuits, in particular some used in hybrid technology, in collaboration with the
Thomson D.C.H. (Department of Hybrid Circuits) company. As an example, we
present in Fig. 2.5, the result of the optimization of a circuit layout comprising 41
components and 27 equipotentials: the automated layout design procedure leads to
a gain of 18 % in the connection lengths compared with the initial manual layout.

This study showed that the flexibility of the method enables it to take into account
not only the rules of drawing, which translate the standards of technology, but also
the rules of know-how, which are intended to facilitate routing. In particular, the rules
of drawing impose a minimum distance between two components, whereas the rules
of know-how recommend a larger distance, allowing the passage of connections. To
balance these two types of constraints, the calculation of the area of overlap between
the blocks, on a two-to-two basis, was undertaken according to the formula

S = Sr + a · Sv,

where Sr is the “real” overlapping area, Sv is the “virtual” overlapping area, and a is
a weight factor (typically: 0.1).

These areas Sr and Sv were calculated by increasing the dimensions of the
components fictitiously, with a larger increase in Sv. This induces some kind of
an “intelligent” behavior, similar to that of an expert system. We notice from Fig. 2.5
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• Top: initial manual layout; length of connections: 9532,
• Middle: final layout, optimized by annealing; length of connections

7861,
• Bottom: manual routing using the optimized layout.

Fig. 2.5 Optimization by simulated annealing of the design of an electronic circuit layout com-
prising 41 components

a characteristic of hybrid technology which was easily incorporated into the pro-
gram: the resistances, shown by a conducting link, can be placed under the diodes
or integrated circuits.

The observations noted by the majority of authors concerning the application
of the simulated annealing technique to the layout design problem agree with our
observations: the method is very simple to implement, it can be adapted easily to
various evolving technological standards, and the final result is of good quality, but
it is sometimes obtained at the cost of a significant computing time.

2.5.3 Search for an Equivalent Schema in Electronics

We now present an application which mixes the combinatorial and the continuous
aspects: automatic identification of the “optimal” structure of a linear circuit pat-
tern. The objective was to automatically determine a model which includes the least
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possible number of elementary components, while ensuring a “faithful” reproduction
of experimental data. This activity, in collaboration with the Institute of Fundamen-
tal Electronics (IEF, CNRS URA 22, Orsay), began with the integration, in a single
software package, of a simulation program for linear circuits (implemented at the
IEF) and a simulated annealing-based optimization program developed by us. We
initially validated this tool by characterizing models of real components, with a com-
plex structure, described using their distribution parameters S. Comparison with a
commercial software package (developed using the gradient method) in use at the
time of the IEF showed that simulated annealing was particularly useful if the orders
of magnitude of the parameters of the model were completely unknown: obviously
the models under consideration were of this nature, since even their structure was to
be determined. We developed an alternative simulated annealing method, called log-
arithmic simulated annealing [9], which allows an effective exploration of the space
of variations of the parameters when this space is very wide (more than 10 decades
per parameter). Then the problem of structure optimization was approached by the
examination—in the case of a passive circuit—of the progressive simplification of
a general “exhaustive” model: we proposed a method which could be successfully
employed to automate all the simplification stages [10]. This technique is based on
the progressive elimination of the parameters according to their statistical behavior
during the process of optimization by simulated annealing.

We present here, with the help of illustrations, an example of a search for an equiv-
alent schema for a monolithic microwave integrated circuit (MMIC) inductance, in
the frequency range from 100 MHz to 20 GHz. On the basis of an initial “exhaus-
tive” model with 12 parameters, as shown in Fig. 2.6, and allowing each parameter
to move over 16 decades, we obtained the equivalent schema shown in Figure 2.7
(the final values of the six remaining parameters are beyond the scope of our present
interest: they are specified in [10]). The layouts in the Nyquist plane of the four
S parameters of the quadrupole shown in Fig. 2.7 coincided nearly perfectly with
the experimental results for the MMIC inductance, and this was true over the entire
frequency range [10].

Fig. 2.6 Initial structure with 12 elements
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Fig. 2.7 Optimal structure
with six elements

2.5.4 Practical Applications in Various Fields

An important field of application of simulated annealing is image processing: here
the main problem is to restore images, mainly in three-dimensional forms, using a
computer, starting from incomplete or irregular data. There are numerous practical
applications in several domains, such as robotics, medicine (e.g., tomography), and
geology (e.g., prospecting). The restoration of an image using an iterative method
involves, under normal circumstances, the treatment of a large number of variables.
Hence it calls for the development of a suitable method which can limit the comput-
ing time of the operation. Based on the local features of the information contained in
an image, several authors have proposed numerous structures and algorithms specif-
ically to address the problem of carrying out calculations in parallel. Empirically, it
appears that the simulated annealing method should be particularly well suited for
this task. A rigorous theoretical justification of this property can be obtained starting
from the concepts of Markovian fields [14], which provide a convenient and coher-
ent model of the local structure of the information in an image. This concept has
been explained in detail in [42]. The “Bayesian approach” to the problem of optimal
restoration of an image, starting from a scrambled image, consists in determining
the image which has “the maximum a posteriori probability.” It has been shown that
this problem can ultimately be expressed as a well-known minimization problem of
an objective function, comprising a very large number of parameters, for example
the light intensities of all the “pixels” of an image in case of an image in black and
white. Consequently, the problem can be considered as a typical problem for simu-
lated annealing. The iterative application of this technique consists in updating the
image by modifying the intensities of all of the pixels in turn, in a prespecified order.
This procedure leads to a significant consumption of computing time: indeed, the
number of complete sweeps of the image necessary to obtain a good restoration is
typically about 300 to 1000. But, as the calculation of the energy variation is purely
local in nature, several methods have been proposed to update the image by simulta-
neously treating a large number of pixels, using specialized elementary processors.
The formalism of Markovian fields has made it possible to treat by simulated anneal-
ing several crucial tasks in the automated analysis of images: restoration of scrambled
images, image segmentation, image identification. Apart from this formalism, other
problems in the image-processing domain have also been solved by annealing: for
example, the method has been utilized to determine the geological structure of the
basement, starting from the results of seismic experiments.
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To finish, we will mention some specific problems, in very diverse fields, where
simulated annealing has been employed successfully: organization of the data-
processing network for Loto (this required ten thousand playing machines to be
connected to host computers), optimization of the collection of household garbage
in Grenoble, timetabling problems (one problem was, for example, to perform the
optimal planning of rest days in a hospital), and optimization of structures (in a
project on constructing a 17-floor building for an insurance company, it was neces-
sary to distribute the activities among the various parts so that the work output from
2000 employees could be maximized). Several applications of simulated annealing
to scheduling problems can be found, in particular, in [5, 18, 27, 48]. The adequacy
of the method for this type of problem has also been discussed. For example, Van
Laarhoven et al. [48] showed that the computing time involved was unsatisfactory.
Moreover, in [13], Fleury underlined several characteristics of scheduling problems
which make them unsuitable for simulated annealing and he recommended a dif-
ferent stochastic method for this problem inspired by simulated annealing and tabu
search: the “kangaroo method.”

2.6 Advantages and Disadvantages of the Method

From the preceding discussion, the principal characteristics of the method can be
established. Firstly, the advantages: it is observed that the simulated annealing tech-
nique generally achieves a good-quality solution (i.e., an absolute minimum or good
relative minimum for the objective function). Moreover, it is a general method: it is
applicable, to all problems which can potentially employ iterative optimization tech-
niques, and it is easy to implement, under the condition that after each transformation
the corresponding change in the objective function can be evaluated directly and
quickly (often the computing time becomes excessive if complete re–computation of
the objective function cannot be avoided after each transformation). Lastly, it offers
great flexibility, as one easily can build new constraints into the program afterwards.

Now, let us discuss the disadvantages. Users are sometimes repelled by the
involvement of a great many parameters (initial temperature, rate of decrease of the
temperature, length of the temperature stages, termination criterion for the program).
Although the standard values published for these parameters generally allow effective
operation of the method, the essentially empirical nature of them can never guarantee
suitability for a large variety of problems. The second defect of the method—which
depends on the preceding one—is the computing time involved, which is excessive
in certain applications.

In order to reduce this computing time, we still require an extensive research
effort to determine the best values of the parameters of the method beyond the
generalized results published so far [39], particularly the law of decrease of the
temperature. Any progress in the effectiveness of the technique and in the computing
time involved is likely to be obtained by continuing the analysis of the method in three
specific directions: the utilization of interactive parameter setting, parallelization of
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the algorithm, and the incorporation of statistical physics-based approaches to the
analysis and study of disordered media.

2.7 Simple Practical Suggestions for Beginners

• Definition of the objective function: some constraints can be integrated into the
objective function, whereas others constitute a limitation on the form of the dis-
turbances for the problem.

• Choice of disturbance mechanisms for the “ current configuration”: the calculation
of the corresponding variation �E of the objective function must be direct and
rapid.

• Initial temperature T0: this may be calculated in a preliminary step using the
following algorithm:

– initiate 100 disturbances at random; evaluate the average 〈�E〉 of the corre-
sponding variations �E ;

– choose an initial rate of acceptance τ0 of the “degrading perturbations” according
to the assumed “quality” of the initial configuration; for example:
· “poor” quality: τ0 = 50 % (starting at high temperature),
· “good” quality: τ0 = 20 % (starting at low temperature);

– deduce T0 from the relation: e−〈�E〉/T0 = τ0.

• Metropolis acceptance rule: this can be utilized practically in the following man-
ner: if �E > 0, a number r in [0, 1] is drawn randomly, and the disturbance is
accepted if r < e−�E/T , where T indicates the current temperature.

• Change to next temperature stage: this can take place as soon as one of the fol-
lowing two conditions is satisfied during a temperature stage:

– 12 · N perturbations accepted;
– 100 · N perturbations attempted, N indicates the number of degrees of freedom

(or parameters) of the problem.

• Decrease of the temperature: this can be carried out according to the geometrical
law Tk+1 = 0.9 · Tk .

• Program termination: this can be activated after three successive temperature
stages without any acceptances.

• Essential verifications during the first executions of the algorithm:

– the generation of the real random numbers (in [0, 1]) must be very uniform;
– the “quality” of the result should not vary significantly when the algorithm is

implemented several times:
· with different “seeds” for the generation of the random numbers,
· with different initial configurations;
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– for each initial configuration used, the result of simulated annealing should
compare favorably, theoretically, with that of the quenching (“disconnected”
Metropolis rule).

• An alternative version of the algorithm in order to achieve less computation time:
simulated annealing is greedy and not very effective at low temperature; hence one
might be interested in utilizing the simulated annealing technique, prematurely
terminated, in cascade with an algorithm of local type for specific optimization of
the problem, whose role is to “refine” the optimum.

2.8 Modeling of Simulated Annealing Through the Markov
Chain Formalism

Let R be the complete space of all possible configurations of the system, and let r ∈ R
be a “state vector,” whose components entirely define a specified configuration (or
“state”). Let the set IR consist of the numbers assigned to each configuration of R:

IR = (1, 2, . . . , |R|)

where |R| is the cardinality of R. Finally, let us denote by C(ri ) the value of the
cost function (or “energy”) in the state i , where ri is the state vector for the state,
and let Mi j (T ) be the probability of a transition from the state i to the state j at a
“temperature” T . In the case of the simulated annealing algorithm, the succession of
states forms a Markov chain, in the sense that the probability of transition from the
state i to the state j depends only on these two states, and not on the states previous
to i . In other words, all the past information about the system is summarized in
the current state. When the temperature T is maintained constant, the probability of
a transition Mi j (T ) is constant, and the corresponding Markov chain is known as
homogeneous. The probability of a transition Mi j (T ) from the state i to the state j
can be expressed in the following form:

Mi j (T ) =
{

Pi j · Ai j (T ) if i �= j
1 − �k �=i Pik · Aik(T ) if i = j

where Pi j is the probability of perturbation, i.e., the probability of generating the
state j when one is in the state i , and Ai j (T ) is the probability of acceptance, i.e.,
the probability of accepting the state j when one is in the state i at a temperature T .

The first factor, Pi j , can be calculated easily. In fact, the system is generally per-
turbed by randomly choosing a movement from the allowed elementary movements.
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The results of this is that

Pi j =
{ |Ri |−1 if j ∈ IRi

0 if j /∈ IRi

where Ri denotes the subset of R comprising all the configurations which can be
obtained in only one movement starting from the state i , and IRi denotes the set
of the numbers of these configurations. As for the second factor, Ai j (T ), this is
often defined by the Metropolis rule. Aarts and Van Laarhoven [1] noted that, more
generally, the simulated annealing method makes it possible to impose the following
five conditions:

1. The configuration space is connected, i.e. two unspecified states i and j corre-
spond to a finite number of elementary movements.

2. ∀i, j ∈ IR : Pi j = Pji (reversibility).
3. Ai j (T ) = 1, if �Ci j = C(r j ) − C(ri ) ≤ 0 (the movements which result in a

reduction in energy are systematically accepted).

4. If �Ci j > 0

⎧⎨
⎩

lim
T →∞ Ai j (T ) = 1

lim
T →0

Ai j (T ) = 0

(movements which result in an increase in energy are all accepted at infinite
temperature, and all refused at zero temperature).

5. ∀i, j, k ∈ Ir | C(rk) ≥ C(r j ) ≥ C(ri ) : Aik(T ) = Ai j (T ) · A jk(T ).

2.8.1 Asymptotic Behavior of Homogeneous Markov Chains

By using the results obtained for homogeneous Markov chains, one can establish the
following properties.

2.8.1.1 Property 1

Consider a Markov process generated by a mechanism of transition which observes
the five conditions stated above. This mechanism is applied n times, at constant
temperature, starting from a specified initial configuration, arbitrarily chosen. When
n tends towards infinity, the Markov chain obtained has one and only one equilibrium
vector, called q(T ), which is independent of the initial configuration. This vector,
which consists of |R| components, is called distribution of static probability of the
Markov chain. Its i th component, i.e., qi (T ), represents the probability that the
system is in the configuration i when, after an infinity of transitions, the steady state
is reached.
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2.8.1.2 Property 2

qi (T ) is expressed by the following relation:

qi (T ) = Ai0i (T )

|R|∑
i=1

Ai0i (T )

,

where i0 denotes the number of an optimal configuration.

2.8.1.3 Property 3

When the temperature tends towards infinity or zero, the limiting values of qi (T ) are
given by lim

T →∞ qi (T ) = |R|−1 and

lim
T →0

qi (T ) =
{ |R0|−1 if i ∈ IR0

0 if i /∈ IR0

where R0 denotes the set of the optimal configurations, i.e.,

R0 = {
ri ∈ R | C (ri ) = C

(
ri0

)}

Property 3 results immediately from property 2 when condition 4 is used. Its inter-
pretation is the following: for larger values of the temperature, all configurations
can be obtained with the same probability. On the other hand, when the temperature
tends towards zero, the system reaches an optimal configuration with a probability
equal to unity. In both cases, the result is obtained at the end of a Markov chain of
infinite length.

Remark If one chooses the probability of acceptance Ai j (T ) recommended by
Metropolis (see [1] for a justification for this choice regardless of any analogy with
physics),

Ai j (T ) =
{

e−�Ci j /T if �Ci j > 0
1 if �Ci j ≤ 0

one finds in property 2 the expression for the Boltzmann distribution.

2.8.2 Choice of Annealing Parameters

We saw in the preceding subsection that the convergence of the simulated annealing
algorithm is assured when the temperature tends towards zero. A Markov chain of
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infinite length undoubtedly ends in the optimal result if it is built at a sufficiently low
(though nonzero) temperature. But this result is not of any practical utility because,
in this case, the equilibrium is approached very slowly. The Markov chain formalism
makes it possible to examine theoretically the convergence speed of the algorithm.
One can show that this speed is improved when one starts from a high temperature
and this temperature is then decreased in stages. This procedure requires the use of
an annealing program, which defines the optimal values of the parameters of the
descent in temperature. We will examine four principal parameters of the annealing
program:

• the initial temperature;
• the length of the homogeneous Markov chains, i.e., the criterion for changing

between temperature stages;
• the law of decrease of the temperature;
• the criterion for program termination.

For each of them, we will indicate first the corresponding result of the theory, which
leads to an optimal result but often at the cost of a prohibitive computing time. Then
we mention some values obtained by experiment.

2.8.2.1 Initial Temperature

There exists a necessary but not sufficient condition so that the optimization process
does not get trapped in a local minimum. The initial temperature T0 must be suffi-
ciently high that, at the end of the first stage, all configurations can be obtained with
the same probability. A suitable expression for T0 which ensures a rate of acceptance
close to 1 is the following:

T0 = r · max
i j

�Ci j

with r � 1 (typically r = 10). In practice, in many combinatorial optimization prob-
lems, this rule is difficult to employ, because it is difficult to evaluate maxi j �Ci j a
priori. The choice of T0 in this case has to be obtained from an experimental proce-
dure, carried out before the process of optimization itself. During such a procedure,
one calculates the evolution of the system during a limited time; one acquires some
knowledge about the configuration space, from which one can determine T0. This
preliminary experiment can consist simply in calculating the average value of the
variation in energy �Ci j , with the temperature maintained at zero. Aarts and Van
Laarhoven [1] proposed a more sophisticated preliminary procedure: they estab-
lished an iterative formula which makes it possible to adjust the value of T0 after
each perturbation so that the rate of acceptance is maintained constant. These authors
indicated that this algorithm led to good results if the values of the cost function for
the various system configurations were distributed in a sufficiently uniform way.
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2.8.2.2 Length of the Markov Chains (or Length of the Temperature
Stages); Law of Decrease of Temperature

The length of the Markov chain, which determines the length of the temperature
stages, and the law of decrease of the temperature, which affects the number of
stages, are two parameters of the annealing program that are very closely dependent
on each other and which are most critical from the point of view of the computing
time involved. An initial approach to the problem is to seek the optimal solution
by fixing the length M of the Markov chains so as to reach quasi-equilibrium, i.e.
to approach equilibrium to within a short distance ε that is fixed a priori and is
characterized by the vector of the static probability distribution q(T ). One obtains
the following condition:

M > K
(|R|2 − 3 |R| + 3

)

where K is a constant which depends on ε. In the majority of combinatorial opti-
mization problems, the total number of configurations |R| is an exponential function
of the number N of variables of the system. Consequently, the above inequality leads
to an exponential computing time, which has been confirmed by experimental obser-
vations in the case of a particular form of the traveling salesman problem (the cities
considered occupy all the nodes of a plane square network, which makes it possible
to easily calculate the exact value of the global optimum of the cost function: this a
priori knowledge of the solution is very useful for analyzing the convergence of the
algorithm). These experimental results also show that a considerable gain in CPU
time is obtained if one is willing to deviate a little from the optimum. A deviation in
the final result of only 2 % compared with the optimum makes it possible to decrease
the exponential computing time to a cubic time in N .

This gave rise to the idea of performing the theoretical investigations again, seek-
ing parameters of the annealing program that ensure a deviation from the true opti-
mum, independently of the dimension of the problem considered. The starting pos-
tulate of the reasoning is as follows: for each homogeneous Markov chain generated
during the process of optimization, the distribution of the states must be close to the
static distribution (i.e., the Boltzmann distribution, if one adopts the Metropolis rule
of acceptance). This situation can be implemented on the basis of a high temperature
(for which one quickly reaches quasi-equilibrium, as indicated by property 3). Then
it is necessary to choose the rate of decrease of the temperature such that the static
distributions corresponding to two successive values of T are close together. In this
way, after each change between temperature stages, the distribution of the states
approaches the new static distribution quickly, so that the length of the successive
chains can be kept small. Here one can see the strong interaction that exists between
the length of the Markov chains and the rate of decrease of the temperature. Let T
and T ′ be the temperatures of two unspecified successive stages and let α be the rate
of decrease of the temperature

(
T ′ = αT < T

)
. The condition to be satisfied can be

written as ∥∥q(T ) − q(T ′)
∥∥ < ε

(ε is a positive small number).
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This condition is equivalent to the following, which is easier to use:

∀i ∈ IR : 1

1 + δ
<

qi (T )

qi (T ′)
< 1 + δ

(δ is also a positive and small number, called the distance parameter). It can then
be shown, with the help of some approximations, that the rate of decrease of the
temperature can be written as

α = 1

(1 + T · ln (1 + δ)/3 · σ (T ))
(2.1)

where σ(T ) is the standard deviation of the values of the cost function for the states
of the Markov chain at a temperature T .

Aarts and van Laarhoven recommend the following choice for the length of the
Markov chains:

M = max
i∈IR

|Ri | (2.2)

where Ri is the subset of R comprising all the configurations that can be obtained
in only one movement starting from the state i . The Markov chain formalism thus
leads to an annealing program characterized by a constant length of the Markov
chain and a variable rate of decrease of the temperature. This result, which is based
on theory, differs from the usual empirical approach: in the latter case, one adopts
a variable length of the temperature stages and a constant rate α of decrease of
the temperature, typically ranging between 0.90 and 0.99. It is observed, however,
that the parameter α is not very critical to achieving convergence of the algorithm,
provided the temperature stages last long enough.

2.8.2.3 Program Termination Criterion

Quantitative information on the progress of the optimization process can be obtained
from the entropy, which is a natural measurement of the order of the system. This is
defined by the following expression:

S(T ) = −
|R|∑
i=1

qi (T ) · ln (qi (T ))

It can be shown that S(T ) can be written in the following form:

S(T ) = S(T1) −
∫ T1

T

σ 2
(
T ′)

T ′3 dT ′
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and σ 2 (T ) can easily be estimated numerically using the values of the cost function
for the configurations obtained at the temperature T . A termination criterion can
then be formulated starting from the following ratio, which measures the difference
between the current configuration and the optimal configuration:

S(T ) − S0

S∞ − S0

where S∞ and S0 are defined by the relations

S∞ = lim
T →∞S(T ) = ln |R|

S0 = lim
T →0

S(T ) = ln |R0|

One can also detect a disorder–order transition (and consequently decide to slow
down the cooling) by observing any steep increase in the following parameter, which
is similar to the specific heat: σ 2(T )/T 2. If one wishes to perform precise numerical
calculations, these criteria are applicable in practice only when the Markov chains
are of sufficient length. If this is not the case, another termination criterion can be
obtained starting from extrapolation to zero temperature of the smoothed average
Cl(T ) of the values of the cost function obtained during the process of optimization:

∣∣∣∣dCl(T )

dT
· T

C(T0)

∣∣∣∣ < εs (2.3)

where εs is a positive small number, and C(T0) is the average value of the cost
function at the initial temperature T0.

Remark If one adopts the rate of decrease of the temperature and the termination cri-
terion defined by the relations (2.1) and (2.3), respectively, Aarts and Van Laarhoven
showed the existence of an upper limit, proportional to ln |R|, for the total num-
ber of temperature stages. Moreover, if the length of the Markov chains is fixed in
accordance with the relation (2.2), the execution time of the annealing algorithm is
proportional to the following expression:

max
i∈IR

|Ri | · ln |R|

But the term max |Ri | is generally a polynomial function of the number of vari-
ables of the problem. Consequently, an annealing program defined by the relations
(2.1)–(2.3) allows one to solve the majority of the NP-hard problems while obtain-
ing, in polynomial time, a result which varies by only a few percent from the global
optimum, and this is true regardless of the dimension of the problem considered.
The above theoretical considerations have been confirmed by the application of this
annealing program to the traveling salesman and logical partitioning problems.
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2.8.3 Modeling of the Simulated Annealing Algorithm
by Inhomogeneous Markov Chains

The results which we have presented up to now are based on the assumption of a
decrease of the temperature in stages (which ensures fast convergence of the simu-
lated annealing algorithm, as we have already mentioned). This property makes it
possible to represent the process of optimization in the form of a complete set of
homogeneous Markov chains, whose asymptotic behavior can be described simply.
We have seen that this results in a complete theoretical explanation of the operation
of the algorithm, and the development of usable annealing program. Some authors
have been interested in the convergence of the simulated annealing algorithm within
the more general framework of the theory of inhomogeneous Markov chains. In
this case, the study of the asymptotic behavior is more delicate: for example, Gidas
[15] showed the possibility of the appearance of phenomena similar to phase tran-
sitions. We will be satisfied here with highlighting the main result of this work, of
primarily theoretical interest: the annealing algorithm converges towards a global
optimum with a probability equal to unity if, as the time t tends towards infinity,
the temperature T (t) does not decrease more quickly than the expression C/ln (t),
where C denotes a constant that is related to the depth of the “energy well” of the
problem.

2.9 Annotated Bibliography

Reference [42] This book describes the principal theoretical approaches to sim-
ulated annealing and the applications of the method in the early
years of its development (1982–1988), when the majority of the
theoretical basis was established.

Reference [31] The principal metaheuristics are described in great detail in this
book. An elaborate presentation of simulated annealing is given
in Chap. 3. Some applications are presented, in particular, the
design of electronic circuits and the treatment of scheduling prob-
lems.

Reference [36] In this book several metaheuristics are extensively described,
including simulated annealing (in Chap. 3). The theoretical ele-
ments relating to the convergence of the method are clearly pre-
sented in detail. The book includes also a study of an application
in an industrial context (that of the TimberWolf software pack-
age, in connection with the layout-routing problem). This is an
invaluable resource for those undertaking academic study of the
subject. Each chapter is supplemented with suitable exercises.

http://dx.doi.org/10.1007/978-3-319-45403-0_3
http://dx.doi.org/10.1007/978-3-319-45403-0_3
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Reference [28] The principal metaheuristics are also described in this book.
Chapter 5 is completely devoted to simulated annealing and con-
cludes with an application in the field of industrial production.

Reference [46] This book is a collection of contributions from a dozen authors.
Simulated annealing is not treated in detail, however.
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