Some Practical Techniques for Global Search in Go 67

SOME PRACTICAL TECHNIQUES FOR GLOBAL SEARCH IN GO

Keh-Hsun Chen'

Charlotte, USA

ABSTRACT

A position evaluation and a candidate-move-generation strategy for global selective search
in Go are described. Moreover, some Go-specific enhancements to the basic global selective
alpha-beta game-tree search procedure are discussed. Finally, empirical results on the
performance of the enhancements are presented.

1. INTRODUCTION

Go is a board game invented in China four thousand years ago. It is very popular in Japan, China and Korea,
and has gradually attracted players in the western world in recent years. Current estimations amount to 30
million players worldwide. The standard Go game is played on a 19x19 grid using black and white stones.
There are two players. One uses the black stones and the other uses the white stones. They alternately place
their stones one at a time onto some empty board-intersection points. Unlike chessman, a stone never moves,
but it may disappear from the board, called captured, when it loses all its liberties, i.e., it is completely
surrounded by the opponent’s stones. With the exception of moves causing a full-board repetition (a situation
referred to as ko), or causing own-stones suicide, every empty grid point is a legal position for play. The
objective of the game is to secure more grid points, called territory, than the opponent. Go, just like chess, is a

two-person perfect-information game.

PyYS
-+
@ \E é

ny/
e

9
)

@@@;

1%
A\J

{9

550

%3

! !

&

(s

N
&/
A\
&/
=N
!

9_

0
_@

Q06

Figure 1: A partial Go game of moves 1 to 40 from a computer-Go

tournament, moves are numbered in order.

Figure 1 shows the first 40 moves
of a Go game taken from a
computer-Go tournament match.
For a detailed description of the
Go game and its rules, readers may
access the following web sites:

http://www.usgo.org/resources/
whatisgo.html

and

http://www.britgo.org/intro/introl.
html.

1 Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.

E-mail: chen@uncc.edu

68 ICGA Journal June 2000

The branching factor is over 200 on average. The high number prevents any exhaustive global search algorithm
from looking ahead sufficiently deep. Furthermore, understanding and evaluating Go game positions are
extremely hard for the machine. The playing strength of Go programs today is far below the human expert
level. This is true not only in regular 19x19 Go but also in 9x9 Go. The latter has an average branching factor
of about 40, which is comparable to that of chess. So, the positional understanding problem per se posts
already a seemly insurmountable challenge to Go programming. It is not uncommon to see two opposing Go
programs with each of them indicating that it is over 20 points ahead of the other in the middle of a tournament
game, at the same time on the same board configuration. The conclusion is obvious, Go is widely regarded as a
most difficult game for the machine.

Many different general approaches have been used in building Go programs, including pattern matching
(Zobrist, 1970), global selective search (Chen, 1990), decomposition search (Miller, 1999), static analysis
(Chen and Chen, 1999), neuron networks (Enzenberger, 1996), etc. This paper focuses on the global selective-
search approach as implemented in the author’s program GO INTELLECT. We describe a basic position
evaluation and a candidate-move-generation strategy for the global selective search in Sections 2 and 3, and
discuss Go-specific enhancements to the basic global selective alpha-beta game-tree search algorithm in
Sections 4 to 7. Empirical results on the performance of the enhanced global search procedure are presented in
Section 8. Finally, Section 9 concludes the paper and suggests future research topics.

2. UNDERSTANDING AND EVALUATION

As we can see from Figure 1, a game configuration of Go is a scattered collection of black and white stones on
the Go board. In order for the machine to find a good move or even just to decide whether a move is legal,
some basic understanding of the current Go configuration is essential.

A multi-level hierarchy of arrays of records is used for knowledge representation in GO INTELLECT. The idea is
adopted from Friedenbach (1980). At the lowest level, the current board configuration is just a two-dimensional
array of black and white stones

o plus empty points. (For reasons of
ééé efficiency, many programs,
L(\ p L@ including GO INTELLECT, use a

4 5) one-dimensional array to represent

(3 \7}, }T-@ the board avoiding implicit
_@@o A3 A multiplication during array access.)

The level above it is the level of
O@ & blocks. A block is a directly
é connected set of stones of the same

Y
p

\.D

colour, also known as strings (see
Figure 2). The empty points
immediately adjacent to a stone in
the block are called liberties. When
a block loses all its liberties, the
stones in the block will be removed
from the board.

6

)Y
/o

)

&
&

¢
@
T @—%

Figure 2: Blocks - stones of same block are marked by the same
number.

Some Practical Techniques for Global Search in Go 69

3878
58866

4) @;
\

@

o116

6_1_

t
B

©
®
C’D
&l
)
]
-OBB1 6
©

Figure 3: Chains - stones of same chain are marked by the same
number.

- X X
@X X

/\l
X
X
QX
X
X
XXX
ié
©
X
X

Figure 4: Groups - stones of same group are marked by the same
number.

The next higher level is the level of
chains. A chain is a collection of
inseparable blocks of the same colour,
(see Figure 3). Chain 5 is recognized
by the multiple common liberties of its
two blocks. Chain 10 is recognized by
one protected common liberty of its
blocks. Chain 19 is recognized by
matching the stones with a linkage
pattern.

The highest level is the level of
groups. A group is a family of related
chains plus the enclosed spaces and
the possibly-dead opponent stones,
called prisoners. A group forms a
strategic unit in a Go game (see Figure
4). The spaces of a group are shaded,
the prisoners are marked by triangles
and the frontier spaces are marked by
X. Groups have many important
attributes, such as area and safety. For
a detailed description of how the
groups are identified and how
associated properties are computed,
we refer to Chen (1989). Go players
know that a group requires two eyes to
live. A set of heuristic rules for
evaluating the number of eyes for a
group can be found in Chen and Chen
(1999).

For each new board configuration and
for each node in the global search tree,
the program typically performs several
dozens of goal-oriented local searches.

These local searches include:

* Ladder - check whether each 2-
liberty block can be captured by
consecutive ataries and whether each
1-liberty block can escape from the
opponent’s consecutive ataries. (An
atari is a move that reduces the liberty
of an opponent block to 1.)

* Capture - check whether a block
can be captured.

* Multi-block capture - check
whether one of a set of target blocks
can be captured.

* Life/Death - check whether a
group can make 2 eyes, this search is
done only when the heuristic rules fail
to make a definite conclusion.

* Linkage - check whether 2 nearby
chains can be connected when the
heuristic rules and the linkage pattern
library do not provide the answer.

70

Q

&

26
elele

OO

ICGA Journal

2O

QR
@9@8@@

00066
é
-
«

R0
A8
QR0

[+2)
£

2]
=y
o
b

06 | 000660

61606

0686
066
0886

D

6@ @ 6

OOOIIEIEIE)
OOOOOOOOO-@-

PP
4P
P63
HOABOOE

BOOOOOOE--P-

Figure 5: Territorial Evaluation.

8066168000006

B80NHR 00N
06606680668-008666

iy

2]

A2 472 A% A7

BOBOO

5% T
~+C (
® O+ (
OO0 pig B
O @,

)
A\
)
./

Figure 6: Moves and the associated weights generated by the
move generator ProtectGroup.

June 2000

The safety of a group is determined by
the group’s eye number and eye-
making potential. The number of eyes
and the eye-making potentials of
adjacent opponent groups are also
important factors in calculating the
group safety. For simplicity, let us
assume that the safety is a real number
between -1 and 1. Safety value 1
means that the group is completely
safe. Safety value -1 means that the
group is dead for sure. For each point
p on the Go board, we define
Territory(p] to be the safety
value of the group to which p belongs
if the group belongs to the player who
is to move, and (- safety value) if the
group belongs to the opponent. If point
p does not belong to any group then
Territory[p] will be determined
by the influence value (cf. Chen,
1989), and safeties of the groups in the
nearby neighbourhood. Figure 5 shows
the ferritory values in the range of -64
to 64 (dividing by 64 gives the
normalized value between -1 and 1).

The summation of Territory([p]
for all points p on the board is a
reasonable evaluation of a current
board configuration or a current node
in a global search tree. A major
evaluation error frequently occurs
when two or more groups are in a fight
and each of them, with safety < 1, does
not clearly have two eyes. An accurate
evaluation depends on an accurate
deep look-ahead on the development
of the battle, which has a complexity
equivalent to the original move
decision problem of Go. Some of these
fighting positions cause evaluation
problems even to human experts.

3.

Some Practical Techniques for Global Search in Go 71

GENERATING CANDIDATE MOVES

00

r'\
\

PP

O1®

O+®

A\J

o

0010

[

A

L/

I
N/
'

e

)
o/

Fe, | YrumrFs

Q
Q

Figure 7: Moves and the associated weights generated by the move

generator EdgeFxtension.

4 2 41 92 2 2 2

2

2 A4 a6 A0 40

Sbin 1

Py

4
-O0@
O

[3]

b
4l
™

[, S)

[%)

[1]

N

F)

Figure 8: The combined move values, which rank the candidate

moves for selection.

Since Go is a territorial game, it is

natural to design special-purpose

move generators to achieve one or

more of the following basic goals:

* expand the player’s territory,

* reduce the opponent’s territory,

* increase the safeties of the
player’s groups,

* reduce the safeties of the
opponent’s groups.

GO INTELLECT has 20 move
generators. For example, the move
generator ProtectGroup produces
the surrounding good-shape points
of an unsafe group to increase the
safety of the group (see Figure 6).
The move generator Edge
Extension suggests moves for edge
extension and for preventing the
opponent’s edge extension (see
Figure 7). Each move generator
generates Zero Or more moves,
each move has an associate
weight. Pattern libraries are
commonly used by Go programs
to suggest plausible candidate
moves. A pattern move generator
and a YosePattern move generator
(each with its own library to match
the stones on the board) produce
candidate moves recommended by
the libraries with associate
weights. Some move generators
require special-purpose local
searches. The sum of all weights
of each point is computed (see
Figure 8). The top 10 or so
candidate moves with the highest
combined weights are selected as
potential moves to try in the global
selective search. The half of the
highest move value is used as a
threshold. Only moves with a
value reaching the threshold will
be selected. So, frequently the
number of candidate moves is
fewer than the maximum allowed
number of 10. (If no other move
reaches the lower bound, the move
with the highest move value is
immediately selected for play.)
The practical techniques discussed
below frequently produce early
cut-offs. Hence, usually only less
than half of all selected candidate
moves are actually tried in the
search look-ahead.

72 ICGA Journal June 2000

4. CUT OFF THE SEARCH AT QUIESENCE

When the board configuration is stable, the evaluation method of Section 2 is quite accurate. But when it is not
stable, the evaluation function may produce a value with a large error. Therefore, it is better that a global
selective search procedure in Go does not use a fixed predetermined search depth. Instead, a pair of depth
bounds MinDepth and MaxDepth can be used. Each node in the global search tree is computationally intense
and may involve dozens of local searches. So, the depth bounds cannot be set too high in the present-day
computational environment. GO INTELLECT currently uses 5 for MaxDepth and 1 for MinDepth in its global
search. (Of course, goal-oriented local searches usually look more deeply.) During the global look-ahead, all
nodes generated within the depth bounds are evaluated. If a node is stable, its territorial evaluation is passed up
without further node expansion, because further look-ahead may be forced to terminate at unstable nodes
producing unreliable results. It is not an easy task to decide whether a current node is stable. The following
heuristic rule seems to work well at practice.

* If the evaluation of the current node and the evaluation of the parent node differ by an amount less than
twice the RegularMoveValue then the current node is likely to be stable.

RegularMoveValue is an estimate of how many points an average move is worth at the current stage of the
game. It is about 16 at the opening and it gradually decreases to 1 near the end of the game.

5. CUT OFF THE SEARCH WHEN THE TARGET VALUE IS REACHED

Quite often, a suicidal move or another kind of bad move can produce an unrealistically “good” (backup)
evaluation. For example, a risky invasion might appear temporarily to make the opponent’s territory smaller, or
an atari move with a bad side effect might force the opponent to respond and push a bad problem off the search
horizon. So looking at too many moves, the search engine will inevitably select some rather bad moves. An
effective way to reduce such kind of bad-move decision and yet still to obtain a great deal of candidate moves
to execute when needed is as follows.

* Set a target value before the search starts and stop examining further candidate moves as soon as the target
value is reached.

Target value = Max (parent node’s evaluation value, current node’s evaluation value) + 1

The above formula gives a good setting of the initial target value. We decrease this target value gradually, say
by subtracting one for each new move tried. So, we have a moving-down target as we go down the selected
candidate move list. If we have reached the target, do not look at any more moves from the candidate list, just
use the best move so far to play or to back up its value. When the candidate moves examined so far fail to
handle the opponent’s threat properly, the current minimax back-up will fall short of the target value. In this
case, more selected candidate moves can be tried in turn until the target is reached or candidate moves are
exhausted. Hopefully, an adequate response can be found in the process. In order for the target value technique
to produce good results, selected candidate moves needs to be roughly strongly-ordered (Chen, 1998).

6. ADJUSTMENT BY URGENCY VALUE OF THE CANDIDATE MOVE

Using minimax back-up of territorial evaluations to decide which candidate move to play has a big flaw (Chen,
2000). It may select those moves that look “big” and ignore solid/urgent defensive moves, for which the bad
consequences of omitting (or the good consequences of playing) are beyond the search horizon. For example, a
move protecting a crucial cut of our group may be wrongly evaluated by the territorial evaluation function as
smaller than an edge-extension move elsewhere on the board. So, the bad consequences of failing to protect the
cut are not detected within the current search horizon and will be recognized by territorial evaluation function
only many moves later.

My solution to this problem is to introduce an urgency value for each move. The urgency value is in the range
of 0 to about 20. The value originates from move generators and/or pattern-recognition routines.

* The urgency value of a move is added to the minimax back-up of the move when competing for the best

Some Practical Techniques for Global Search in Go

choice at each node in the search tree, but the urgency value itself is not backed up.

A move leading to a position, in which the opponent has an urgent response, should not be penalized by the

urgency value of the opponent’s move.

7. AN ENHANCED GLOBAL SELECTIVE GAME-TREE SEARCH PROCEDURE

If we incorporate all the enhancements, mentioned in the previous sections, into the classical neg-max version
of the alpha-beta procedure, we obtain the following outline of a global selective search routine for Go. It is
presented in a Pascal/Modula2-like pseudo code. We reiterate that the urgency value plays an important role in

selecting the best move but the urgency value itself is not passed back up.

INTEGER;

VAR

BEGIN

AlphaBetaX(p: POSITION; alpha, beta, depthToGo, parentVal: INTEGER; VAR bestMove: POINT):

eval, max, i, v, w: INTEGER;
pBest: POINT;
u, u0: INTEGER;
target: INTEGER;

eval == StaticEvaluation(p);
bestMove := Empty;
IF (abs(parentVal + eval) < 2*RegularMoveValue) (*the node is stable¥*)
THEN
RETURN eval;
ELSE IF (depthToGo = 0) THEN
RETURN (eval-parentVal) DIV 2;
(*this usually gives better evaluation than eval when the node is not stable*)
END(*IF*);
generate top few legal moves ml, m2,...,mw;
max := alpha;
u0 :=0;
target := Maxi(eval, -parentVal) + 1;
FORi:=1TO w DO
u := Urgency(mi);
execute move mi on p to get position pi;
v := - AlphaBetaUT(pi, -Beta, -max-u0-+u, depthToGo - 1, eval, pBest);
IF (v +u>max +u0) THEN
max :=v; u0 := u; bestMove = mi;
END(*IF*);
IF (max >= beta) OR (max >= target-i) THEN
RETURN max;
END(*IF*);
END(*FOR*);
RETURN max;

END AlphaBetaUX;

This procedure can be called from the top level via

OldScore := Score;
Score := AlphaBetaX(current position, -999, 999, MaxDepth, OldScore, BestPoint);

74 ICGA Journal June 2000

8. EFFECTIVENESS OF THE ENHANCED GLOBAL SEARCH PROCEDURE

Fifty games were played between GO INTELLECT with the enhanced global selective search procedure outlined
above and the same version of GO INTELLECT with a normal fixed depth (i.e., to MaxDepth) global selective
search. Each version played Black, i.e., moving first, in 25 games, and played White, i.e., moving second, in
the other 25 games. Both versions used level 8, GO INTELLECT’s normal tournament level, with time limit one
hour each. Moreover, 6 points komi was used (i.c., Black’s territory was deducted by 6 points at the end to even
out the advantage of moving first). The enhanced version won 17 games, 68% of 25, taking Black, and won 14
games, 56% of 25, taking White. Over all, it won 62% of the games. Furthermore, the enhanced version played
15.5% faster than the standard version on an average of fifty games.

In a separate double round-robin tournament I experimented with 8 variations of the same GO INTELLECT
equipped with a global selective search with forward pruning, moving target, and urgency adjustment at
different on/off settings. Each version played 14 games. The version with all three enhancement settings was
the clear winner with 10 wins. The other versions, beating one another, had 6 to 8 wins each.

9. CONCLUSION AND FUTURE WORK

In contrast to the global selective search described above, there is decomposition search (Mii ller, 1999). This
combinatorial game approach works well in endgame stages of Go, when the board can be divided into
independent regions. In early and mid-game stages, it is essentially impossible to have mutually independent
decompositions of the board. The author has tried a semi-decomposition search approach to computer Go,
dividing the board into roughly “independent” regions without much success. The interactions of the
developments of the decomposed regions are simply too great to ignore. Global selective search does not have
the interaction/coordination problems of the semi-decomposition search. Two main questions remaining are:
(1) How to improve the quality of the board evaluation function? and (2) How to ensure that a good move is
included in a small set of selected candidate moves? The answers are necessary conditions for improving the
decision quality of global selective-search-based Go programs.

The main weakness of the global selective-search approach to computer Go is that the same moves may appear
time and again in different order and at many different places in the global search tree. This makes the search
rather inefficient (it is exactly what decomposition search can avoid). Avoiding/reducing such inefficiency can
make the search procedure several orders faster and allow the search to go more deeply. It will result in a much
stronger program. A balanced combination of global selective search and decomposition search taking
advantage of the merits of both methods may well be the best approach to computer Go.

10. REFERENCES
Chen, K. (1989). Group Identification in Computer Go, Heuristic Programming in Artificial Intelligence, (eds. D.N.L. Levy
and D.F. Beal), pp. 195-210. Ellis Horwood Ltd., Chichester, England. ISBN 0-7458-0778-X.

Chen, K. (1990). Move Decision Process of Go Intellect, Computer Go, No.14, pp. 9-17.

Chen, K. (1998). Heuristic Search in Go Game Tree, Proceedings of Joint Conference on Information Sciences '98, Vol. 1I,
pp. 274-278. The Association for Intelligent Machinery, Inc. ISBN 0-9643456-7-6.

Chen, K. and Chen, Z. (1999). Static Analysis of Life and Death in the game of Go, Information Sciences, Vol. 121, Nos. 1-
2, pp. 113-134. ISSN 0020-0255.

Chen, K. (2000). Decision Error in Selective Game Tree Search, Proceedings of Joint Conference on Information Sciences
2000, Vol. 1, pp. 978-981. The Association for Intelligent Machinery, Inc. ISBN 0-9643456-9-2.

Enzenberger, M. (1996). The Integration of A Priori Knowledge into a Go Playing Neural Network. http://home.t-
online.de/home/markus.enzenberger/neurogo.html.

Friedenbach, K.J. (1980). Abstraction Hierarchies: A Model of Perception and Cognition in the Game of Go, Ph. D. Thesis,
University of California, Santa Cruz.

Miiller, M. (1999). Decomposition Search: A Combinatorial Games Approach to Game Tree Search, with Applications to
Solving Go Endgames, IJCAI-99, pp. 578-583. Morgan Kaufmann, San Mateo, CA. ISBN 1045-0823.

Zobrist, A.L. (1970). Feature Extraction and Representation for Pattern Recognition and the Game of Go, Ph.D. Thesis
(152 pp.), University of Wisconsin.

